LATTICE QCD AND NEW PHYSICS: PRESENT & FUTURE

Luca Silvestrini - INFN, Rome

Introduction (and Past)

See also: Gamiz, Lellouch

& parallel session

Present:

- precision flavour physics & bounds on New Physics
- evidence of New Physics in the flavour sector (?)

• Future:

- New Physics Lagrangian determination
- Conclusions

Special thanks to M. Bona and M. Ciuchini

INTRODUCTION

The Standard Model works beautifully up to a few hundred GeV's, but it must be an effective theory valid up to a scale $\Lambda \sim M_{NP}$:

$$\mathcal{L}(M_W) = \Lambda^2 H^{\dagger} H + \lambda \left(H^{\dagger} H \right)^2 + \mathcal{L}_{SM}^{gauge} + \mathcal{L}_{SM}^{Yukawa} + \frac{1}{\Lambda} \mathcal{L}^5 + \frac{1}{\Lambda^2} \mathcal{L}^6 + \dots$$

EW scale

Violates accidental symmetries

Has accidental symmetries

HOW TO PROBE NEW PHYSICS WITH FLAVOUR

In the SM, three flavours of fermions with same gauge quantum numbers but different mass.

Flavour eigenstates are not weak interaction eigenstates

⇒ weak interactions change flavour

Accidental symmetry of the SM: Neutral current weak interactions conserve flavour!

quantum corrections computable and sensitive to higher-dim operators

CKM MATRIX AND UT

 All flavour violation from charged current coupling: CKM matrix V

$$V_{CKM} = \begin{vmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \end{vmatrix} + O(\lambda^4)$$

$$A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) - A\lambda^2 \qquad 1$$

• Top quark exchange dominates FCNC loops: third row (V_{tq}) determines FCNC's $\leftrightarrow \bar{\rho}, \bar{\eta}$

Flavour summarized on the p-n plane

BR(b \rightarrow clv), BR(B \rightarrow D(*)lv)

(LAT)

 $BR(b\rightarrow ulv)$, $BR(B\rightarrow \pi lv)$

(LAT)

 Δm_a (B_a-B_a mass diff.)

LAT

$$A_{CP}(b\rightarrow c\overline{c}s) (J/\psi K, ...)$$

 $A_{CP}(b \rightarrow s\overline{s}s, dds) (\phi K, \pi K, ...)$

HAD

$$A_{CP}(b\rightarrow d\overline{d}d, u\overline{u}d) (\pi\pi, \rho\rho, ...)$$

 $BR(b\rightarrow c\overline{u}d, c\overline{u}s)$ (DK, ...)

 $BR(B\rightarrow \tau v)$

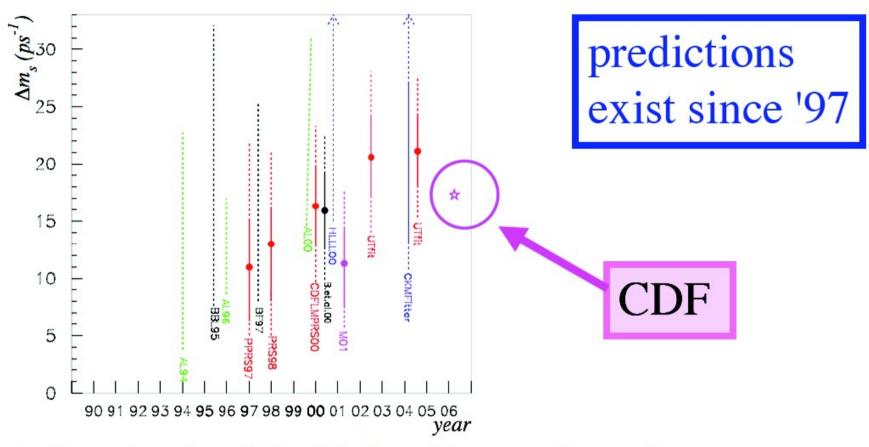

LAT

 $BR(B\rightarrow\rho\gamma)/BR(B\rightarrow K^*\gamma)$

HAD

 ε_{κ} (CP violation in K mixing)

LAT

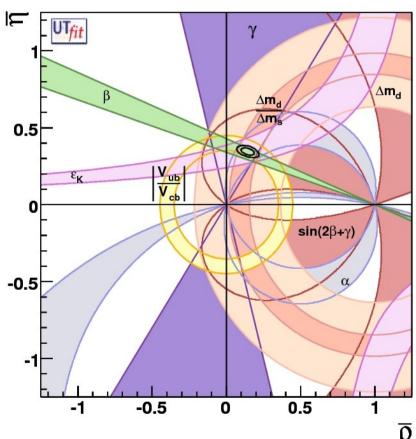

Luca Silvestrini

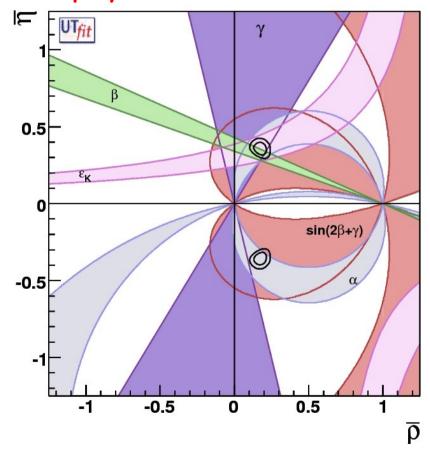
Lattice 2008

THE PAST: A GREAT SUCCESS OF (QUENCHED) LATTICE QCD

- Using Lattice QCD, two very successful predictions have been made: $sin2\beta$ and Δm_s
- $\sin 2\beta_{pred}$ = 0.65±0.12 (Ciuchini et al, 1995) $\sin 2\beta_{pred}$ = 0.70±0.07 (Ciuchini et al, 2000) $\sin 2\beta_{exp}$ = 0.668±0.028 (B_d \rightarrow J/ ψ K_s)

Theoretical predictions of Δm_s in the years




A GREAT SUCCESS OF (QUENCHED) LATTICE QCD CALCULATIONS

G. Martinelli @ CERN 08

PRESENT: THE SM UT ANALYSIS

End of SM parameter determination era, begin of precision test era: redundant determination of the triangle with new measurements from B-factories and Tevatron and test of new physics.

Slight tension between CP-conserving and CP-violating...

THE sin2\beta-Vub TENSION

• Fit "predictions" vs exp results:

UTfit coll., summer 08

$$-V_{ub}^{UT}=(3.48\pm0.16)\ 10^{-3}\ vs$$

$$V_{ub}^{\text{excl}}=(3.5\pm0.4)\ 10^{-3}$$

$$V_{ub}^{incl}=(4.00\pm0.15\pm0.40)\ 10^{-3}$$

$$-\sin 2\beta^{UT} = 0.735 \pm 0.034$$
 or

$$\sin 2\beta^{UT}_{\text{noVub}} = 0.75 \pm 0.09 \text{ vs}$$

$$sin2\beta^{J/\Psi Ks} = 0.668 \pm 0.028$$

See however Soni & Lunghi, Buras & Guadagnoli

THE ROLE OF LATTICE QCD

• Since the determination of the UT is redundant, can compare the indirect (i.e. from the UT fit) determination of QCD parameters with the Lattice QCD input:

UTfit Coll, hep-ph/0606167 & Summer 08 update

 $-B_{K}^{UT}=0.75\pm0.07, B_{K}^{LAT}=0.75\pm0.07$

 $-f_{Bs}\sqrt{B_{Bs}}$ UT=265±4 MeV, $f_{Bs}\sqrt{B_{Bs}}$ LAT=270±30 MeV

 $-\xi^{UT}=1.25\pm0.06, \xi^{LAT}=1.21\pm0.04$

THE UT AND NEW PHYSICS

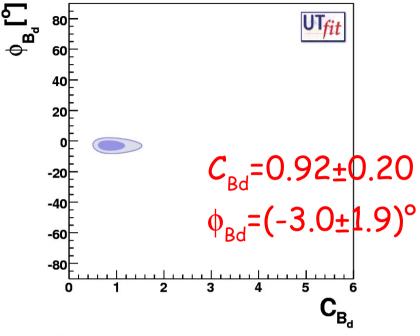
- 1. Use the redundancy of the UTA and Lattice QCD to constrain NP in Delta F=2
 - add most general NP to all sectors
 - use all available experimental info
 - fit simultaneously for the CKM and the NP parameters (generalized UT fit)
- 2. perform an EFT analysis to put bounds on the NP scale
 - consider different choices of the FV and CPV couplings

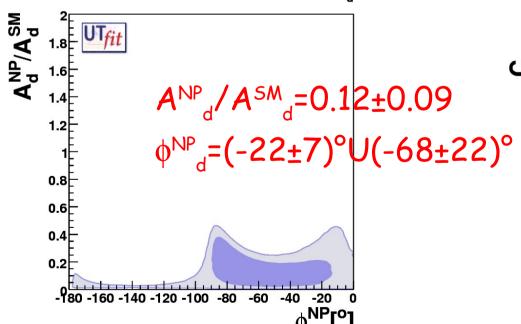
 UTfit Coll., 0707.0636

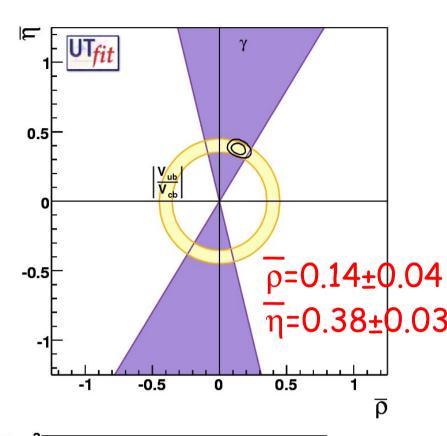
THE GENERALIZED UTA

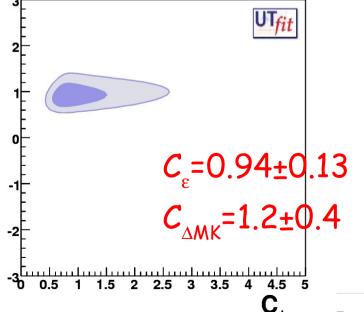
Consider ratios of (SM+NP)/SM amplitudes

$$C_{B_q} e^{2i\phi_{B_q}} = \frac{\langle B_q | H_{\text{eff}}^{\text{full}} | \bar{B}_q \rangle}{\langle B_q | H_{\text{eff}}^{\text{SM}} | \bar{B}_q \rangle} = \frac{A_q^{\text{SM}} e^{2i\phi_q^{\text{SM}}} + A_q^{\text{NP}} e^{2i(\phi_q^{\text{SM}} + \phi_q^{\text{NP}})}}{A_q^{\text{SM}} e^{2i\phi_q^{\text{SM}}}}$$


$$C_{\epsilon_K} = \frac{\text{Im}[\langle K^0 | H_{\text{eff}}^{\text{full}} | \bar{K}^0 \rangle]}{\text{Im}[\langle K^0 | H_{\text{eff}}^{\text{SM}} | \bar{K}^0 \rangle]}, \qquad C_{\Delta m_K} = \frac{\text{Re}[\langle K^0 | H_{\text{eff}}^{\text{full}} | \bar{K}^0 \rangle]}{\text{Re}[\langle K^0 | H_{\text{eff}}^{\text{SM}} | \bar{K}^0 \rangle]}$$


• Determine C's and ϕ 's using generalized


UT analysis


UTfit coll., hep-ph/0605213; Ligeti et al., hep-ph/0604112; Grossman et al, hep-ph/0605028; Ball & Fleischer, hep-ph/0604249; Lenz & Nierste, hep-ph/0612167. Previous attempts: Ciuchini et al., hep-ph/0307195; CKMfitter group, hep-ph/0406184; Ligeti, hep-ph/0408267; Botella et al., hep-ph/0502133; Agashe et al., hep-ph/0509117; UTfit coll., hep-ph/0509219.

*Using all constraints:

Luca Silvestrini

Lattice 2008

Page 13

• Determine coefficients of dimension-6 operators: $Q_1^{q_iq_j} = \bar{q}_{iL}^{\alpha}\gamma_{\mu}q_{iL}^{\alpha}\bar{q}_{iL}^{\beta}\gamma^{\mu}q_{iL}^{\beta},$

$$\mathcal{H}^{K-\bar{K}}_{\text{eff}} = \sum_{i=1}^{5} C_{i} Q_{i}^{sd} + \sum_{i=1}^{3} \tilde{C}_{i} \tilde{Q}_{i}^{sd} \qquad Q_{2}^{q_{i}q_{j}} = \bar{q}_{jR}^{\alpha} q_{iL}^{\alpha} \bar{q}_{jR}^{\beta} q_{iL}^{\beta} \,,$$

$$\mathcal{H}^{D-\bar{D}}_{\text{eff}} = \sum_{i=1}^{5} C_{i} Q_{i}^{cu} + \sum_{i=1}^{3} \tilde{C}_{i} \tilde{Q}_{i}^{cu} \qquad Q_{3}^{q_{i}q_{j}} = \bar{q}_{jR}^{\alpha} q_{iL}^{\beta} \bar{q}_{jR}^{\beta} q_{iL}^{\alpha} \,,$$

$$\mathcal{H}^{B_{q}-\bar{B}_{q}}_{\text{eff}} = \sum_{i=1}^{5} C_{i} Q_{i}^{bq} + \sum_{i=1}^{3} \tilde{C}_{i} \tilde{Q}_{i}^{bq} \qquad Q_{5}^{q_{i}q_{j}} = \bar{q}_{jR}^{\alpha} q_{iL}^{\beta} \bar{q}_{jL}^{\beta} q_{iR}^{\alpha} \,,$$

$$\mathcal{H}^{B_{q}-\bar{B}_{q}}_{\text{eff}} = \sum_{i=1}^{5} C_{i} Q_{i}^{bq} + \sum_{i=1}^{3} \tilde{C}_{i} \tilde{Q}_{i}^{bq} \qquad Q_{5}^{q_{i}q_{j}} = \bar{q}_{jR}^{\alpha} q_{iL}^{\beta} \bar{q}_{jL}^{\beta} q_{iR}^{\alpha} \,,$$

- In the SM, only Q_1 is present. Q_{2-5} are RG-enhanced (and chirally-enhanced in K)
 - \Rightarrow NP models w. $C_{2-5} \neq 0$ more constrained

H_{eff} can be recast in terms of the high-scale $C_i(\Lambda)$

- $C_i(\Lambda)$ can be extracted from the data (one by one)
- the associated NP scale Λ can be defined as

$$\Lambda = \sqrt{\frac{LF_i}{C_i(\Lambda)}}$$

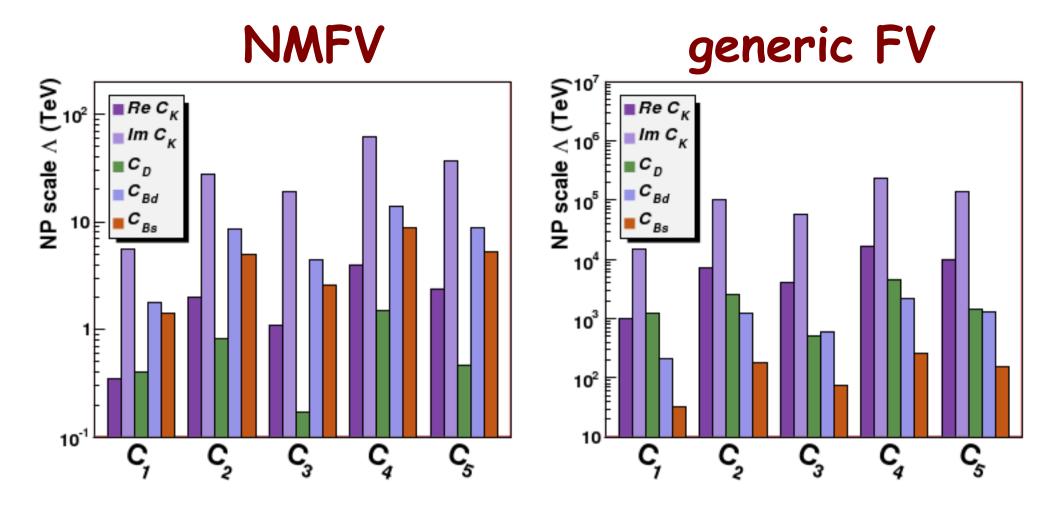
tree/strong interact. NP: L ~ 1 perturbative NP: L ~ α_s^2 , α_W^2

Flavour structures:

MFV

-
$$F_1 = F_{SM} \sim (V_{tq} V_{tb}^*)^2$$

 $-F_{i\neq 1} = 0$


next-to-MFV

- |F_i| ~ F_{SM}
- arbitrary phases

generic

- $-|F_i|\sim 1$
- arbitrary phases

Luca Silvestrini Lattice 2008 Page 15

Contributions of the ΔF =2 operators to the lower bound on the NP scale in the tree/strong interacting case

present lower bound on the NP scale (TeV @95%)

B + K
B only

Scenario	strong/tree	α_s loop	α_W loop
MFV	5.5	0.5	0.2
NMFV	62	6.2	2
General	24000	2400	800

strong/tree	α_s loop	$lpha_W$ loop
_	_	_
14	1.4	0.4
2200	220	66

- * ΔF =2 chirality-flipping operators are RG enhanced and thus probe larger NP scales
- * when these operators are allowed, the NP scale is easily pushed beyond the LHC reach (manifestation of the flavour problem)
- * suppression of the $1 \leftrightarrow 2$ transitions strongly weakens the lower bound on the NP scale

K and B_d mixings occur at the loop level, thus could receive O(1) NP corrections but effects > ~20% are excluded

common misconception: this result points to MFV (or even establishes MFV)

if NP < 1 TeV

- * suppression of flavourviolating couplings required in all sectors possibly pointing to MFV
- * NP can stabilize the Fermi scale with "mild" fine-tuning

if 1 < NP < 10-100 TeV

- * suppression of flavourviolating couplings needed in sector 1-2 only. No indication of MFV
- * NP can still stabilize the Fermi scale with "moderate" fine-tuning

Luca Silvestrini Lattice 2008 Page 18

EVIDENCE FOR FLAVOUR PHYSICS BEYOND THE SM

Great potential of flavour physics to display large deviations from the Standard Model but not a single evidence in >20 years

EVIDENCE FOR FLAVOUR PHYSICS BEYOND THE SM

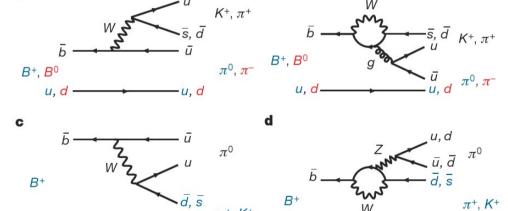
Great potential of flavour physics to display large deviations from the Standard Model but not a single evidence in >20 years

EVIDENCE FOR FLAVOUR PHYSICS BEYOND THE SM

Great potential of flavour physics to display large deviations from the Standard Model but not a single evidence in >20 years

Three new evidences announced:

- * ?.? σ in the CP asymmetries of B -> $K\pi$
- * 3.80 in leptonic D_s decays
- * 3σ in the phase of the B_s mixing amplitude


1. new physics in $K\pi$ CP asymmetries?

$$\mathcal{A}_{K^{\pm}\pi^{\mp}} \equiv \frac{N(\bar{B}^0 \to K^-\pi^+) - N(B^0 - K^+\pi^-)}{N(\bar{B}^0 \to K^-\pi^+) + N(B^0 \to K^+\pi^-)} = -0.094 \pm 0.018 \pm 0.008 \\ \mathcal{A}_{K^{\pm}\pi^0} = +0.07 \pm 0.03 \pm 0.01 \\ \mathcal{A}_{K^{\pm}\pi^0} = +0.07 \pm 0.03 \pm 0.01 \\ \text{Nature 452,2008}$$

$$\Delta A \equiv A_{K^{\pm}\pi^{0}} - A_{K^{\pm}\pi^{\mp}} = +0.164 \pm 0.037$$

difference: 4.40

Is this new physics?
It could be but SM
predictions depend on
hadronic models

L.S., arXiv:0705.1624

QCDF [50]

PQCD [54, 55]

SCET [58]

GP [92]

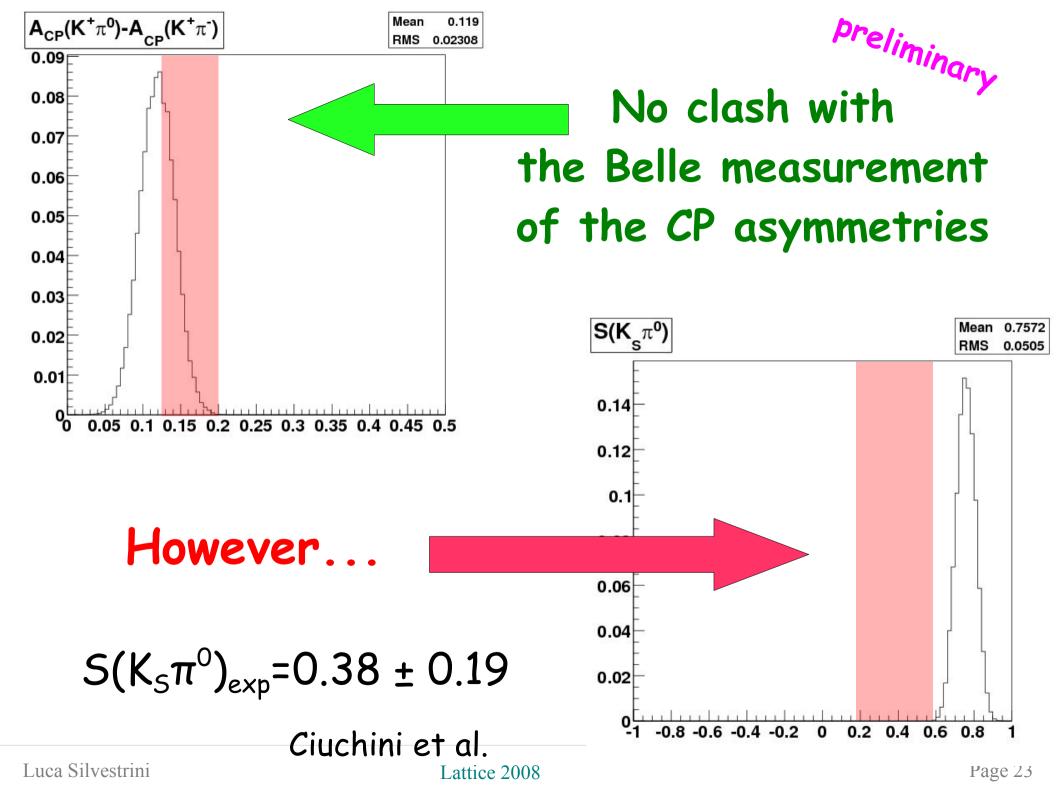
$$A_{\rm CP}(\pi^0 K^-)$$
 7.1 $^{+1.7}_{-1.8}$ $^{+2.0}_{-2.0}$ $^{+0.8}_{-0.6}$ $^{+9.0}_{-9.0}$

$$-1^{+3}_{-5}$$

 $-11 \pm 9 \pm 11 \pm 2$

 3.4 ± 2.4

$$A_{\rm CP}(\pi^+K^-)$$

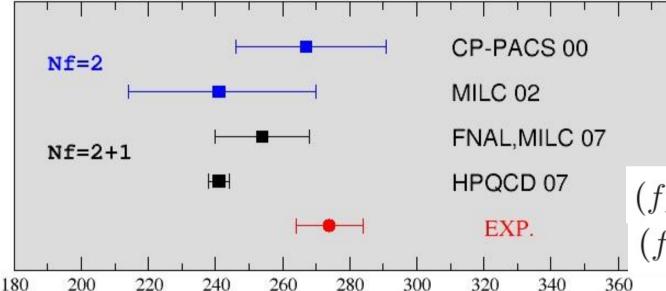

$$4.5^{\,+1.1}_{\,-1.1}{}^{\,+2.2}_{\,-0.5}{}^{\,+0.5}_{\,-0.6}{}^{\,+8.7}_{\,-9.5}$$

$$-9^{+6}_{-8}$$

$$-6 \pm 5 \pm 6 \pm 2$$

$$-8.9 \pm 1.6$$

Lattice 2008



2. Evidence for non-standard leptonic

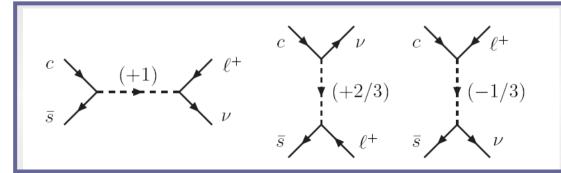
decays of D_s mesons

Dobrescu, Kronfeld arXiv:0803.0512

$$B(D_s \to \ell \nu) = \frac{m_{D_s}}{8\pi} \tau_{D_s} f_{D_s}^2 \left| G_F V_{cs}^* m_\ell \right|^2 \left(1 - \frac{m_\ell^2}{m_{D_s}^2} \right)^2$$

 f_{Ds} (MeV)

lattice result only
Follana et al.


arXiv:0706.1726

 $(f_{D_s})_{\rm QCD} = 241 \pm 3 \text{ MeV}$ $(f_{D_s})_{\rm expt} = 277 \pm 9 \text{ MeV}$

3 difference: 3.80

"exotic" new physics:

- leptoquarks
- exotic charged Higgs

courtesy of V. Lubicz

3. NEW PHYSICS IN B MIXING

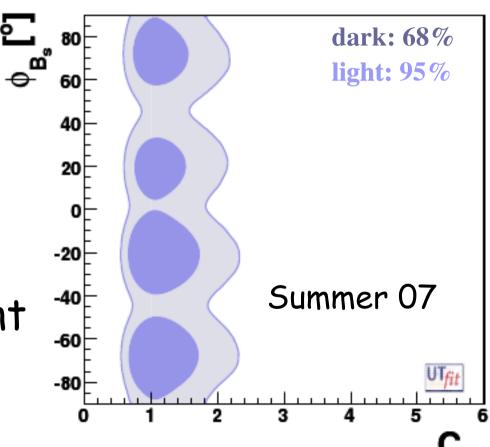
the TeVatron realm

$$C_{\rm B_s} = 1.11 \pm 0.32$$

$$\star$$
 Δm_s

$$\tau_{B_s}^{FS} = \frac{1}{\Gamma_s} \frac{1 + \left(\frac{\Delta \Gamma_s}{2\Gamma_s}\right)^2}{1 - \left(\frac{\Delta \Gamma_s}{2\Gamma_s}\right)^2}$$

$$\star A_{\rm SL}^s$$


$$\star$$
 $A_{\rm SL}^s$

$$A_{\rm SL}^{\mu\mu} = \frac{f_d \chi_{d0} A_{\rm SL}^d + f_s \chi_{s0} A_{\rm SL}^s}{f_d \chi_{d0} + f_s \chi_{s0}}$$

 * $\Delta\Gamma_s$ and ϕ_s from the untagged time-dependent angular analysis of

$$B_s \rightarrow J/\Psi \phi$$

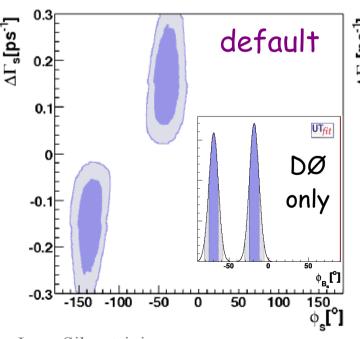
 $\phi_{B_c} = (-69\pm14)^{\circ} \text{ U } (-20\pm14)^{\circ}$ U (20±5)° U (72±8)°

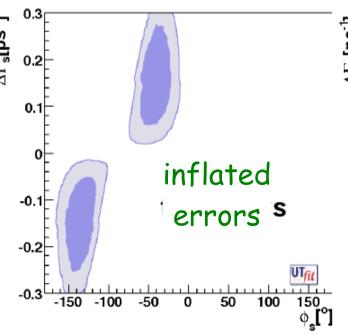
Recently both CDF and DØ published the <u>tagged</u> time-dependent angular analysis of $B_s -> J/\Psi \phi$

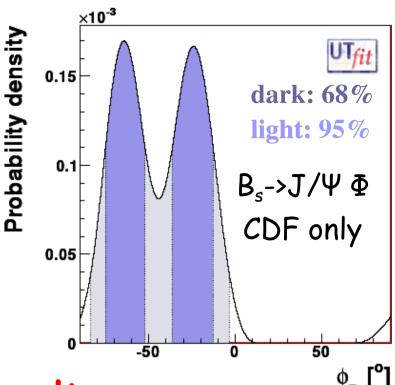
2D likelihood ratio for $\Delta\Gamma$ and ϕ_s

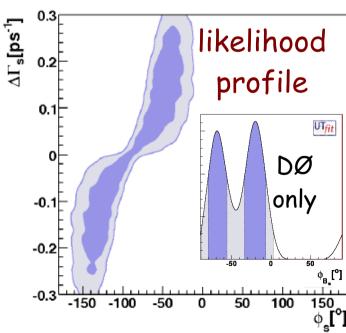
2-fold ambiguity present, no assumption on the strong phases

arXiv:0712.2397

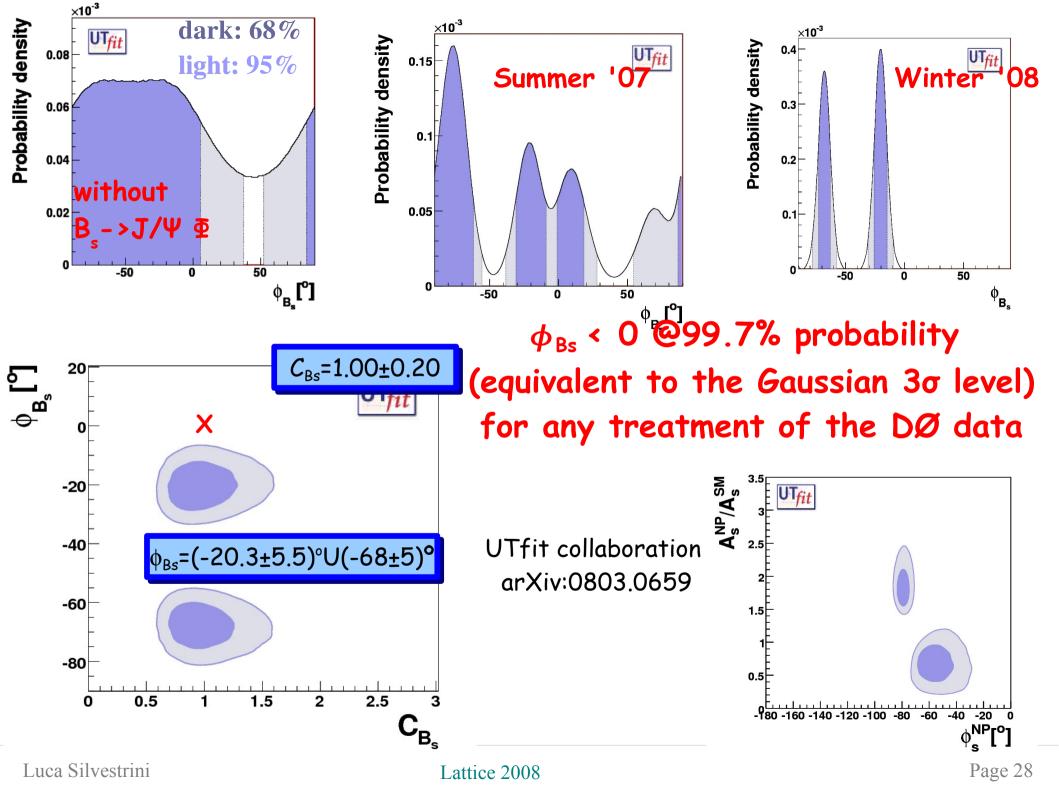

7-parameter fit + correlation matrix or 1D likelihood profiles of $\Delta\Gamma$ and ϕ_s 2-fold ambiguity removed using strong phases from B -> J/Ψ K* + SU(3) +?


arXiv:0802.2255


Combining the two measurements requires some gymnastic with the DØ results...


- * <u>default</u>: CDF likelihood+Gaussian DØ result with 2x2 corr. matrix
- * inflated error: as above, but with error inflated to reproduce the 2σ range computed by $D\varnothing$
- * <u>likelihood profile</u>: using the 1D likelihood profiles for ϕ_s and $\Delta\Gamma_s$

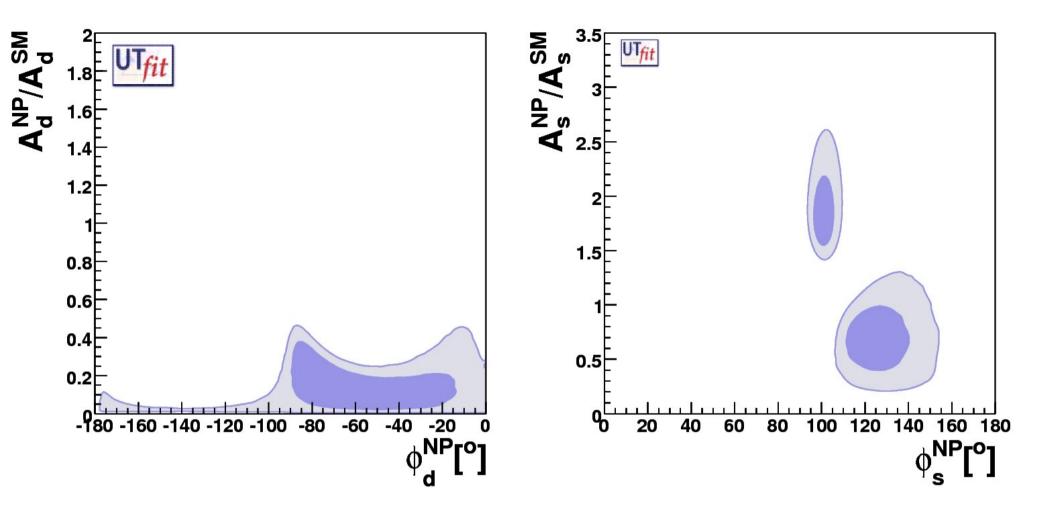
ambiguity reintroduced in the DØ result



Luca Silvestrini

Lattice 2008

Page 2


• Lower bounds on NP scale from K and B_d physics: (in TeV at 95% probability)

Scenario	strong/tree	α_s loop	α_W loop
MFV	5.5	0.5	0.2
NMFV	62	6.2	2
General	24000	2400	800

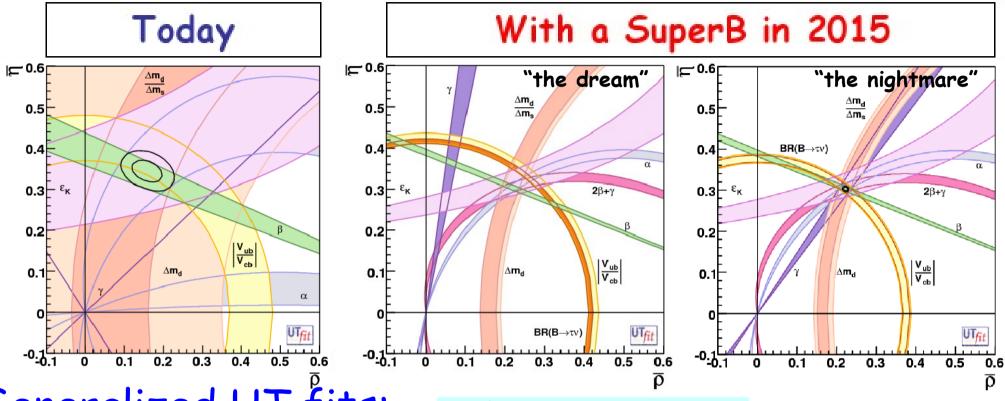
• Upper bounds on NP scale from ϕ_s :

Scenario	strong/tree	α_s loop	α_W loop
NMFV	35	4	2
General	800	80	30

· Need a flavour structure, but not NMFV!

 $A^{NP}_{d}/A^{SM}_{d}\sim 0.1$ and $A^{NP}_{s}/A^{SM}_{s}\sim 0.7$ correspond to $A^{NP}_{d}/A^{NP}_{s}\sim \lambda^{2}$ i.e. to an additional λ suppression.

IMPLICATIONS ON NP


• Large NP contributions to $b \leftrightarrow s$ transitions are natural in nonabelian flavour models, given the large breaking of flavour SU(3) due to the top quark mass
Pomarol, Tommasini; Barbieri, Dvali, Hall; Barbieri, Hall; Barbieri, Hall, Romanino; Berezhiani, Rossi; Masiero et al; ...

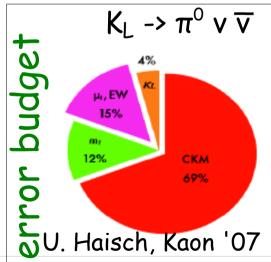
- GUTs can naturally connect the large mixing in v oscillations with a large $b \leftrightarrow s$ mixing Baek et al.; Moroi; Akama et al.; Chang, Masiero, Murayama; Hisano, Shimizu; Goto et al.; ...
- 4th generation interesting possibility, check carefully other constraints (EW, b $\rightarrow s\gamma$, ...)

IMPLICATIONS ON NP - II

- In a given model expect correlation between b \leftrightarrow s (B_s mixing) and b \rightarrow s (penguin decays) transitions
- This correlation is welcome given the large room for NP in $b \to s$ hadronic penguins $(S_{peng}, A_{K\pi}, ...)$ Beneke; Buchalla et al.; Buras et al.; London et al.; Hou et al.; Lunghi & Soni; Feldmann et al.; ...
- The correlation is however affected by large hadronic uncertainties

FLAVOUR PHYSICS IN 2015

Generalized UT fits:


today

SuperB

presence of NP! $\bar{\eta}$ 0.370±0.036 ±0.005

CKM at 1% in the \bar{p} 0.187±0.056 ±0.005

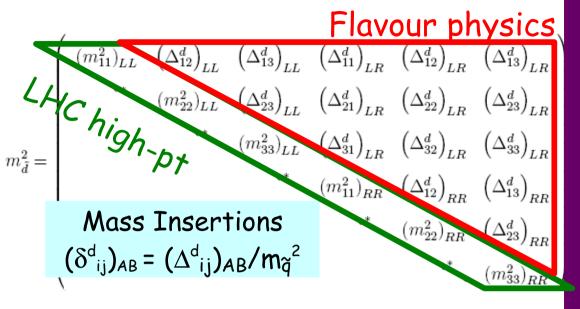
- crucial for many NP searches with flavour (not only for B decays!)

RECONSTRUCTING LNP

- LHC high-pt experiments will be able to detect new particles up to the TeV scale
- This will give us (part of) the NP spectrum
- LHCb and SuperB will be crucial to study the NP flavour couplings and to
- detect virtual effects of NP particles heavier than the LHC high-pt reach

THE SUSY EXAMPLE

Parameters	MSSM		S	SM	
gauge+Higgs	14		6		
masses	30	(36)	9	(12)	
mixing angles	39	(54)	3	(6)	
phases	41	(56)	1	(2)	
Total	124	(160)	19	(26)	

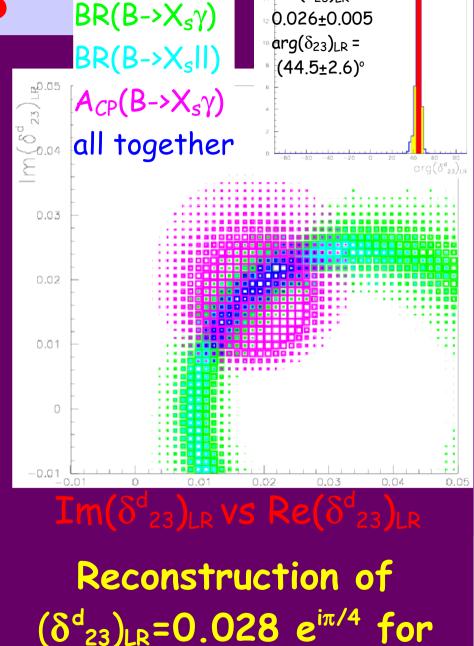

SM parameters match: FC vs FV&CPV 17-9

MSSM parameters match: FC vs FV&CPV 50-110

- * fast increase of the # of FV&CPV parameters
- * FV&CPV are related to basic properties of the NP Lagrangian (e.g. SUSY breaking in the MSSM)

Luca Silvestrini Lattice 2008 Page 3

SQUARK MASSES



3σ from 0 sensitivity from SuperB:

- i) sensitive to $\Lambda \!\!\!<\!\! 20$ TeV for $\delta \!\!\!\sim\!\! 1$
- ii) sensitive to $|(\delta^d_{23})_{LR}| > 10^{-2}$ for

Λ~1 TeV

SuperB CDR & SuperB workshops

 $\Lambda = m_{\tilde{a}} = m_{\tilde{a}} = 1$

reconstucted

 $abs(\delta_{23})_{IR} =$

Luca Silvestrini Lattice 2008

THEORY MUST KEEP UP WITH EXP...

- lattice QCD can reach the O(1%) precision goal
- some progress for inclusive techniques for SL B decays
- non-leptonic B decays more problematic...

Measurement	$\operatorname{Hadronic}$	Present	6 TFlops	Flops 60 TFlops	1-10 PFlops	
	Parameter	Error			(Year 2015)	
$K o \pi l u$	$f_+^{K\pi}(0)$	0.9%	0.7%	0.4%	< 0.1 %	
$arepsilon_K$	\hat{B}_K	11%	5 %	3 %	1%	
B o l u	f_B	14%	3.5-4.5%	2.5-4.0%	1.0-1.5%	V. Lubicz,
Δm_d	$f_{Bs}\sqrt{B_{B_s}}$	13%	4-5 $%$	3-4%	1-1.5~%	4 th SuperB
$\Delta m_d/\Delta m_s$	ξ	5 %	3 %	1.52~%	0.5-0.8%	Workshop
$B \to D/D^* l \nu$	$\mathcal{F}_{B o D/D^*}$	4~%	2%	1.2%	0.5%	and
$B o \pi/\rho l u$	$f_+^{B\pi}, \dots$	11%	5.5- $6.5%$	45~%	2-3 %	SuperB
$B \to K^*/\rho \left(\gamma, l^+ l^- \right)$	$T_1^{B \to K^*/\rho}$	13%		9	3-4%	CDR

CONCLUSIONS

- Lattice QCD has been very successful in the UT analysis
- Several hints of NP, with solid indications of nonstandard CP violation in B_s mixing
- pointing to NP visible at LHC with a nontrivial flavour structure
- combination of high-pt and flavour data crucial to reconstruct the NP Lagrangian

CONCLUSIONS II

- Lattice QCD will play a crucial role in studying the NP flavour properties
- Improvements to the 1-2% level needed to keep up with future experimental results
- If NP has a nontrivial flavour structure, results will be needed for new operators: $\Delta F=2$, (chromo)electric dipoles, ...
- Exciting times ahead!