Recent Progress in Lattice QCD at Finite Density

Shinji Ejiri
(Brookhaven National Laboratory)

QCD thermodynamics at $\mu \neq 0$

Heavy-ion experiments (HIC) (low energy RHIC, FAIR)
Properties of QCD at finite density

Important roles of Lattice QCD study

- Critical temperature (T_c) and Equation of State (EoS) in low density region
 - Important for Hydrodynamic calculations in HIC.
 - Study by Lattice simulations: available

- Propose interesting observations
 - measureable properties of QCD in HIC
 - Critical point at finite density
 - Large fluctuation in quark number ?
 - Large bulk viscosity ?
Lattice QCD at $\mu \neq 0$

- Many interesting results in QCD thermodynamics at $\mu = 0$
- Study at $\mu \neq 0$: in the stage of development.
- Problem of Complex Determinant at $\mu \neq 0$
 \[
 \left(M(\mu)\right)^\dagger = \gamma_5 M(-\mu)\gamma_5 \quad \text{(}\gamma_5\text{-conjugate)}
 \]
 \[
 \text{(det} M(\mu))^* = \text{det} M(-\mu) \neq \text{det} M(\mu)
 \]
- Boltzmann weight: complex at $\mu \neq 0$
 - Monte-Carlo method is not applicable.
 - Configuration cannot be generated.
- Three approaches
 - Taylor expansion in μ
 - Reweighting method: Simulations at $\mu = 0$, Modify the Boltzmann weight
 - Analytic continuation from imaginary chemical potential simulations
Interesting studies in finite density QCD
(16 parallel talks, 5 posters, and a lot of e-mails)

- Equation of State - MILC, RBC-Bielefeld, Hot-QCD, WHOT-QCD…
- QCD Critical point – P. de Forcrand (Fri), A. Li (Tue), X. Meng (Tue)
- Stochastic quantization for QCD at finite μ
 - G. Aarts (Tue); G. Aarts, I.-O. Stamatescu, arXiv:0807.1597
- Two Color QCD: Di-quark condensation
 - K. Fukushima (Thu),
 - S. Hands, J. Skullerud and S. Kim
- Isospin chemical potential - Y. Sasai (Tue)
- High temperature effective theory
- Strong coupling limit
 - M. Fromm (Wed), A. Ohnishi (Wed), K. Miura (Pos)
- Chiral perturbation theory - J. Verbaarschot (Tue)
- Chiral fermions (Domain-Wall, overlap)
 - R. Gavai (Tue); arXiv:0803.392, P. Hegde (Pos)
Plan of talk

• Introduction

• Equation of State at finite density
 – Taylor expansion method

• QCD critical point at finite density
 – Quark mass dependence of the critical point
 – Plaquette effective potential
 – Canonical approach

• Summary and Outlook
Equation of State at finite density

- Taylor expansion method
 (Bielefeld-Swansea Collab., ’02–’06, Gavai-Gupta, ’03–’05)
 Systematic studies using p4-imploved staggered action with rather heavy quark masses. (Bielefeld-Swansea Collab., ’02–’06)
 1. Useful for EoS study for Heavy-ion collisions
 • Low density region is important for HIC
 2. Large fluctuations in the quark number at high density
 • Existence of a critical point: suggested

- Recent Progress
 - Simulations near physical mass point
 MILC Collab., RBC-Bielefeld Collab., Hot QCD Collab.
 • Isentropic equation of state, Fluctuations
 - Simulations with a Wilson-type quark action
 WHOT-QCD Collab.,
 • Quark number fluctuations

(Bielefeld-Swansea Collab., ’06)
Taylor expansion method for EoS

• Heavy-ion collisions: low density
 – In the heavy-ion collision at RHIC, the interesting regime of μ_q is around $\mu_q/T_c \approx 0.1$.

• Taylor expansion in μ at $\mu=0$.

\[
\frac{p}{T^4}(\mu) = \frac{p}{T^4}(0) + c_2 \left(\frac{\mu_q}{T} \right)^2 + c_4 \left(\frac{\mu_q}{T} \right)^4 + c_6 \left(\frac{\mu_q}{T} \right)^6 + \cdots
\]

\[
\frac{p}{T^4} = \frac{1}{VT^3} \ln Z
\]

\[
c_2 = \frac{N_t^3}{2N_s^3} \frac{\partial^2 \ln Z}{\partial (\mu_q/T)^2}, \quad c_4 = \frac{N_t^3}{4!N_s^3} \frac{\partial^4 \ln Z}{\partial (\mu_q/T)^4}, \cdots
\]

\[
\frac{\partial^n \ln Z}{\partial (\mu_q/T)^n} = 0 \text{ for } n \text{ : odd}
\]

• Simulations at $\mu=0$: Free from the complex determinant problem.
• Calculation of the derivatives: a basic technique for QCD thermodynamics.
 e.g. Energy density, Quark number, Quark number susceptibility

\[
\frac{\varepsilon - 3p}{T^4} = -\frac{N_t^3}{N_s^3} \frac{\partial \ln Z}{\partial \ln a}, \quad n_q = \frac{N_t^3}{N_s^3} \frac{\partial \ln Z}{\partial (\mu_q/T)}, \quad \frac{\chi_q}{T^2} = 9 \frac{\chi_B}{T^2} = \frac{N_t^3}{N_s^3} \frac{\partial^2 \ln Z}{\partial (\mu_q/T)^2}
\]

• Taylor expansion method \rightarrow Useful for EoS study
Isentropic Equation of State

• EoS along lines of constant entropy per baryon number (S/N_B)
• Zero-viscosity hydro calculations explain experimental results.
• No entropy production in a heavy-ion collisions (in equilibium)
 $$S/N_B \approx 300$$ (RHIC), $$S/N_B \approx 45$$ (SPS), $$S/N_B \approx 30$$ (AGS)
• MILC Collab. S.Gottlieb’s talk (Monday)
• $N_f=2+1$ Asqtad action, $N_t=4,6$, $m_\pi \approx 220$ MeV

• Lattice discretization error: small. (Open: $N_t=4$, Filled: $N_t=6$)
Isentropic Equation of State

• RBC-Bielefeld Collab. C.Schmidt’s talk (Monday)
• $N_f=2+1$ p4-improved staggered, $N_t=4,6$, $m_\pi \approx 220$MeV
• Consistent with Asqtad results.
• p/ε vs ε is important for hydrodynamic calculations in HIC.
• Density dependence: small
• Velocity of sound c_s

$$c_s^2 = \frac{dp}{d\varepsilon} = \varepsilon \frac{d(p/\varepsilon)}{d\varepsilon} + \frac{p}{\varepsilon}$$

(Filled: $N_t=4$, Open: $N_t=6$)
Hadronic fluctuations and the QCD critical point

- RBC-Bielefeld Collab. C. Schmidt’s talk (Monday)
- Hadronic fluctuations at $\mu \neq 0$ increase with decreasing mass.

\[\frac{\partial^2 \langle \chi_B / T^2 \rangle}{\partial (\mu_B / T)^2} / \frac{\chi_B}{T^2} \]

Low T: hadron resonance gas
High T: quark-gluon gas

RBC-Bielefeld Collab.: $N_f=2+1$, $m_\pi=220$ MeV
Bielefeld-Swansea, (’06) : $N_f=2$, $m_\pi=770$ MeV

- Fluctuations for $m_\pi=220$ MeV increase over the hadron resonance gas value at T_c.

\[\langle B^4 \rangle - 3 \langle B^2 \rangle^2 / \langle B^2 \rangle \]
Equation of state by Wilson quark action

WHOT-QCD Collab. → K. Kanaya’s poster

RG gauge + 2-flavor Clover quark actions, $16^3 \times 4$ lattice, $m_\pi/m_\rho = 0.65$
Hybrid method of Reweighting and Taylor expansion up to $O(\mu_q^4)$

- Large enhancement in the quark number fluctuations at high density.
 → Critical point at finite μ?
QCD critical point in the (T,μ) plane

- Quark mass dependence of the critical line
- Reweighting method and Sign problem
- Plaquette effective potential
- Canonical approach
Quark mass dependence of the critical point

- **Physical point**
 - 2nd order
 - 1st order
 - Crossover

- **Quark mass dependence near μ=0**
 - Fodor, Katz, ’01-’04; Reweighting method
 - Bielefeld-Swansea Collab., ’02,’03; Reweighting method
 - de Forcrand, Philipsen, ’03-’07; Imaginary chemical potential
 - Kogut, Sinclair, ’05-’07; Phase-quenched approximation

Philipsen’s plenary talk in Lattice 2005
Schmidt’s plenary talk in Lattice 2006
Curvature of the critical surface

- Usual expectation
- Critical point: exists

\[\frac{\partial^2 m_C}{\partial \mu^2} > 0 \]

- de Forcrand - Philipsen,
 JHEP01(2007)077; PoS(LAT2007)178
- Curvature: slightly negative.
 (3-flavor, 8^3x4 lattice)

New result \(\rightarrow \) de Forcrand’s talk (Friday)

New result by 12^3x4 lattice is consistent with 8^3x4 result.

\[\frac{\partial^2 m_C}{\partial \mu^2} < 0 \]

\(\rightarrow \) Curvature: Negative.
Imaginary chemical potential approach
(de Forcrand, Philipsen, ’03-’08)

• Binder cumulant:
 – Critical point (Z2 universality): $B_4 = 1.604$
 [Crossover ($m > m_c$): $B_4 = 3$, Strong first order ($m < m_c$): $B_4 = 1$]

• Simulations: possible for imaginary $\mu = i\mu_i$, $\leftarrow \det M(i\mu_i)$: real

• Assumption: $B_4 = 1.604 + b_{10}(m - m_c^0) + b_{01}\mu^2 + b_{02}\mu^4 + \cdots$
 de Forcrand’s talk

• Analytic continuation:
 Fit the simulation results
 $\frac{\partial B_4}{\partial \mu^2} \approx -\frac{b_{01}}{b_{10}} < 0$
 $\iff -b_{01} < 0$

Curvature: Negative $N_t = 4$

Other assumption for analytic continuation,
(D’Elia, Di Renzo, Lombardo, ’ PRD76,114509(2007))
Reweighting method for $\mu \neq 0$ and Sign problem

(Ferrenberg-Swendsen \rightarrow Glasgow group, Fodor-Katz)

- **Reweighting method**
 - **Boltzmann weight**: Complex for $\mu > 0$
 - Monte-Carlo method is not applicable directly.
 - Perform Simulation at $\mu = 0$.

$$\langle O \rangle_{(\beta, \mu)} = \frac{1}{Z} \int DUO (\det M(\mu))^N e^{-S_g(\beta)} = \frac{\langle O e^{i\theta} | \det Nf M(\mu) / \det Nf M(0) \rangle_{(\beta, 0)}}{\langle e^{i\theta} | \det Nf M(\mu) / \det Nf M(0) \rangle_{(\beta, 0)}}$$

- **Sign problem**
 - If $e^{i\theta}$ changes its sign frequently, $\langle O e^{i\theta} \cdots \rangle_{(\beta, 0)}$ and $\langle e^{i\theta} \cdots \rangle_{(\beta, 0)}$ become smaller than their statistical errors.
 - Then $\langle O \rangle_{(\beta, \mu)}$ cannot be computed.
Sign problem and phase fluctuations

• Complex phase of $\det M$ \[\theta = N_f \text{Im}[\ln \det M(\mu)] \]
 – Taylor expansion: odd terms of $\ln \det M$ (Bielefeld-Swansea, PRD66, 014507 (2002))
 – Good definition (staggered quarks: 4th root trick, $\theta/4$?)

\[
\theta = N_f \text{Im} \left[\frac{\mu}{T} \frac{d \ln \det M}{d(\mu/T)} + \frac{1}{3!} \left(\frac{\mu}{T} \right)^3 \frac{d^3 \ln \det M}{d^3(\mu/T)} + \frac{1}{5!} \left(\frac{\mu}{T} \right)^5 \frac{d^5 \ln \det M}{d^5(\mu/T)} + \cdots \right]
\]

\[\theta: \text{NOT in the range of } [-\pi, \pi] \]

• $|\theta| > \pi/2$: Sign problem happens.
 \[e^{i\theta} \text{ changes its sign.} \]

• Gaussian distribution
 – Results for p4-improved staggered
 – Taylor expansion up to $O(\mu^5)$
 – Dashed line: fit by a Gaussian function

Well approximated
\[W(\theta) \approx \sqrt{\frac{\alpha}{\pi}} e^{-\alpha \theta^2} \]
Complex phase distribution

- The Gaussian distribution is also suggested by chiral perturbation theory. (K. Splittorff and J. Verbaarschot, Phys.Rev.D77, 014514(2007))

\[\Rightarrow \text{J. Verbaarschot’s talk (Tuesday)} \]

Assume: Gaussian distribution \(\Rightarrow \) Sign problem is avoided.
(S.E., Phys.Rev.D77, 014508(2008))

- Sign problem: \(\langle (\det M)^N \rangle \equiv \langle e^{i\theta F} \rangle \ll \) (statistical error)

- Gaussian integral:

\[W(F, \theta) \approx \sqrt{\frac{\alpha}{\pi}} e^{-\alpha \theta^2} W'(F) \]

\[\langle e^{i\theta F} \rangle = \int dF \int d\theta \ e^{i\theta} FW(F, \theta) \approx \int dF \ e^{-1/(4\alpha)} FW'(F) \]

\[\langle e^{i\theta F} \rangle \approx \left(e^{-\langle \theta^2 \rangle_F / 2} F \right) \]

- real and positive (No sign problem)
Effective potential of plaquette $V(P)$

Plaquette histogram

- First order phase transition
 Two phases coexists at T_c
 e.g. SU(3) Pure gauge theory
- Gauge action $S_g = -6N_{\text{site}}\beta P$
- Partition function
 \[Z(\beta, \mu) = \int dP \, W(P, \beta, \mu) \]
 \[W(P', \mu) = \int DU \, (\det M(\mu))^N \, e^{-S_g} \delta(P - P') \]

Effective potential
\[V(P) \equiv -\ln(W(P)) \]
Distribution function and Effective potential at $\mu \neq 0$
(S.E., Phys.Rev.D77, 014508(2008))

- Distributions of plaquette P (1x1 Wilson loop for the standard action)

\[
Z(\mu) = \int dP \, R(P, \mu) W(P, \beta)
\]

\[
S_g = -6N_{\text{site}} \beta P
\]

\[
W(\overline{P}, \beta) = \int DU \delta(\overline{P}-\overline{P}) \left(\det M(0) \right)^{N_f} \, e^{-S_g}
\]

(Weight factor at $\mu=0$)

\[
R(\overline{P}, \mu) = \frac{\int DU \, \delta(\overline{P}-\overline{P}) \left(\det M(\mu) \right)^{N_f}}{\int DU \, \delta(\overline{P}-\overline{P}) \left(\det M(0) \right)^{N_f}} = \frac{\left\langle \delta(\overline{P}-\overline{P}) \left(\frac{\det M(\mu)}{\det M(0)} \right)^{N_f} \right\rangle_{(\beta, \mu=0)}}{\left\langle \delta(\overline{P}-\overline{P}) \right\rangle_{(\beta, \mu=0)}}
\]

(Reweight factor)

$R(P, \mu)$: independent of β, $\rightarrow R(P, \mu)$ can be measured at any β.

Effective potential:

\[
V(P) = -\ln[R(P, \mu) W(P, \beta)] = \sqrt{\mu=0 \text{ crossover}} + \text{non-singular} = 1^{\text{st}} \text{ order phase transition?}
\]

\[
V(P) = -\ln[\overline{W}(P, \beta)] - \ln[R(P, \mu)]
\]
\(\mu \)-dependence of the effective potential

Crossover

\[-\ln[W(P,\beta)] \]

Critical point

\[-\ln[W(P,\beta)] - \ln[R(P,\mu)] \]

\(T \)

QGP

hadron

CSC

\[\mu = 0 \] reweighting

Curvature: Zero

\(1^{\text{st}} \) order phase transition

\[-\ln[W(P,\beta)] - \ln[R(P,\mu)] \]

\(\mu = 0 \) reweighting

Curvature: Negative
Effective potential at $\mu \neq 0$

(S.E., Phys.Rev.D77, 014508(2008))

$V(P, \beta, \mu) = -\ln W(P, \beta) - \ln R(P, \mu)$

Results of $N_f=2$ p4-staggage, $m_\pi/m_\rho \approx 0.7$

[data in PRD71,054508(2005)]

- $\det M$: Taylor expansion up to $O(\mu^6)$

- The peak position of $W(P)$ moves left as β increases at $\mu=0$.

Solid lines: reweighting factor at finite μ/T, $R(P, \mu)$

Dashed lines: reweighting factor without complex phase factor.
Curvature of the effective potential

Critical point: \[
\frac{d^2 V(P, \beta, \mu)}{dP^2} = - \frac{d^2 \ln W(P, \beta)}{dP^2} - \frac{d^2 \ln R(P, \mu)}{dP^2} = 0
\]

- First order transition for \(\mu_q/T \geq 2.5\)
- Existence of the critical point: suggested
 - Quark mass dependence: large
 - Study near the physical point is important.
Slope of $\ln R(P, \mu)$ at low density

\[-\ln W(P, \beta) - \ln R(P, \mu)\]

\[
\begin{align*}
\beta \Rightarrow \beta_{\text{eff}} &\equiv \beta + \frac{1}{6N_{\text{site}}} \frac{\partial (\ln R)}{\partial P}
\end{align*}
\]

- Minimum point moves, $P \to \text{large}$
- Same effect as
- The phase transition point becomes lower as μ increases.
Canonical approach

• Canonical partition function (Laplace transformation)

\[Z_{GC}(T, \mu) = \sum_{N} Z_{C}(T, N) \exp(N\mu/T) \equiv \sum_{N} W(N) \]

• Effective potential as a function of the quark number \(N \).

\[V(N) = -\ln W(N) = -\ln Z_{C}(T, N) - N\mu/T \]

• At the minimum,

\[\frac{\partial V(N)}{\partial N} = -\frac{\partial \ln W(N)}{\partial N} = -\frac{\partial \ln Z_{C}(T, N)}{\partial N} - \frac{\mu}{T} = 0 \]

• First order phase transition: Two phases coexist.
First order phase transition line

In the thermodynamic limit,\[\frac{\partial V(N)}{\partial N} = 0, \]
\[\frac{\mu^*}{T} = -\frac{\partial \ln Z_c(T, N)}{\partial N} \]

\[\frac{\mu^*}{T} \rightarrow \frac{\mu}{T} \quad \left(N_s^3 \rightarrow \infty \right) \]

- Mixed state \[\rightarrow \] First order transition
- Inverse Laplace transformation by Glasgow method

\[N_{\text{f}}=4 \] staggered fermions, \[6^3 \times 4 \] lattice
- \[N_{\text{f}}=4 \]: First order for all \(\rho \).

New results: \(N_{\text{f}}=2 \)
- Direct simulations with fixed \(N \)
- Inverse Laplace transformation in a Saddle point approximation
Simulations with Canonical partition function

\(\chi \)QCD collab. (Kentucky group), A. Li and X. Meng’s talk (Tuesday)

- Canonical partition function with fixed \(N \)
 (Alexandru, Faber, Horvath and Liu, Phys. Rev. D72, 114513 (2005))

\[
Z_C (T, N) = \int DU e^{-S_g} (\det N M)^{N_f}
\]

with Fourier coefficients, \((\det N M)^{N_f} \equiv \frac{1}{2\pi} \int_{-\pi}^{\pi} d(\mu_f/T) e^{-iN\mu_f/T} (\det M(i\mu_f))^{N_f} \)

\[\begin{array}{c}
N_f=4: \text{first order transition} \\
N_f=2: \text{crossover}
\end{array}\]

\(0.90T_c \) \hspace{2cm} \(0.92T_c \) \hspace{2cm} \(0.94T_c \)

\(0.83T_c \) \hspace{2cm} \(0.86T_c \)

Wilson quark \(6^3 \times 4 \) lattice
Inverse Laplace transformation with a saddle point approximation (S.E., arXiv:0804.3227)

- **Approximations:**
 - Taylor expansion: \(\ln \det M \) up to \(O(\mu^6) \)
 - Gaussian distribution: \(\theta \)
 - Saddle point approximation
 - Much easier calculations

- **Two states at the same** \(\mu_q/T \)
 - **First order transition at** \(T/T_c < 0.83 \)

- **Study near the physical point** important

Solid line: multi-\(\beta \) reweighting
Dashed line: spline interpolation
Dot-dashed line: the free gas limit

\(N_f=2 \) p4-staggered, \(m_\pi/m_\rho \approx 0.7 \), \(16^3 \times 4 \) lattice

Number density
Summary and outlook

• Equation of State at finite density
 – Isentropic EoS for heavy-ion collisions
 • Simulations near physical quark mass point: studied
 – Large hadronic fluctuation near T_c: observed
 1. Staggered quark with Small quark mass, 2. Wilson-type quark

• QCD critical point at finite density
 – Technical developments
 • Quark mass dependence of the critical line
 • Avoidance of the Sign problem
 • Plaquette effective potential
 • Canonical approach
 – Existence of the QCD critical point: suggested

• Future studies
 – New Technique for high density: required
 – New phenomena at high density