

Physics results from dynamical overlap fermion simulations

Shoji Hashimoto (KEK) @ Lattice 2008 at Williamsburg, Virginia, July 16, 2008.

JLQCD+TWQCD collaborations

JLQCD

- SH, T. Kaneko, H. Matsufuru, J. Noaki, E. Shintani, N. Yamada (KEK)
- H. Ohki, T. Onogi (Kyoto)
- S.Aoki, N. Ishizuka, K. Kanaya, Y. Kuramashi, Y. Taniguchi, A. Ukawa, T. Yoshie (Tsukuba)
- K. Ishikawa, M. Okawa (Hiroshima)
- H. Fukaya (Niels Bohr Inst)
- TWQCD
 - T.W. Chiu, T.H. Hsieh, K. Ogawa (National Taiwan Univ)
- Machines at KEK (since 2006)
 - SRI1000 (2.15 Tflops)
 - BlueGene/L (10 racks, 57.3 Tflops)

Project: dynamical overlap fermions

- Theoretically clean =
 - Respect the symmetry
 - Slow to develop...

Project: dynamical overlap fermions

First large scale simulation with exact chiral symmetry

Theoretical interest

- Dirac operator spectrum: Banks-Casher relation, chiral RMT
- Chiral symmetry breaking: chiral condensate and related
- Topology: θ-vacuum, topological susceptibility

Phenomenological interest

- Controlled chiral extrapolation with the *continuum* ChPT
- Physics applications: B_K, form factors, etc.
- Sum rules, OPE
- Flavor-singlet physics

Publications from the project

Not including conference proceedings

- 1. Fukaya et al. "Lattice gauge action suppressing near-zero modes of H_W ," Phys. Rev. D, 094505 (2006).
- 2. Fukaya et al. "Two-flavor QCD simulation in the ε-regime...," Phys. Rev. Lett 98, 172001 (2007).
- 3. Fukaya et al. "Two-flavor lattice QCD in the *E*-regime...," Phys. Rev. D76, 054503 (2007).
- 4. Aoki, Fukaya, SH, Onogi, "Finite volume QCD at fixed topological charge," Phys. Rev. D76, 054508 (2007).
- 5. Aoki et al., "Topological susceptibility in two-flavor QCD...," Phys. Lett. B665, 294 (2008).
- 6. Fukaya et al., "Lattice study of meson correlators in the ε-regime...," Phys. Rev. D77, 074503 (2008).
- 7. Aoki et al. " B_K with two flavors of dynamical overlap fermions," Phys. Rev. D77, 094503 (2008).
- 8. Aoki et al. "Two-flavor QCD simulation with exact chiral symmetry," arXiv:0803.3197 [hep-lat], to appear in PRD.
- 9. Noaki et al. "Convergence of the chiral expansion...," arXiv:0806.0894 [hep-lat].
- 10. Shintani et al. "S-parameter and pseudo NG boson mass...," arXiv:0806.4222 [hep-lat].
- II. Ohki et al., "Nucleon sigma term and strange quark content...," arXiv:0806.4744 [hep-lat].
- 12. Shintani et al., "Lattice calculation of strong coupling constant...," arXiv:0807.0556 [hep-lat].

Plan

- I. Simulation status
 - Overlap implementation, runs, ...
- 2. Topology issues
 - Physics from fixed topology
 - Topological susceptibility
- 3. Physics applications
 - Chiral condensate
 - Convergence of the chiral expansion (m_{π}, f_{π})
 - Pion form factor, B_K
 - VV-AA, αs
 - Nucleon sigma-term, strange content

1. Simulation status

See also, Matsufuru, poster session

Overlap fermion

Neuberger-Narayanan (1998)

$$D = \frac{1}{a} \left[1 + \frac{X}{\sqrt{X^{\dagger} X}} \right], X = aD_W - 1$$
$$= \frac{1}{a} \left[1 + \gamma_5 \operatorname{sgn}(aH_W) \right], aH_W = \gamma_5 (aD_W - 1)$$

Exact chiral symmetry through the Ginsparg-Wilson relation.

$$D\gamma_5 + \gamma_5 D = a D\gamma_5 D$$

- Continuum-like Ward-Takahashi identities hold
- Index theorem (relation to topology) satisfied

Sign function

 Rational approximation (Zolotarev)

$$\mathcal{E}[x] = x \left(p_0 + \sum_{l=1}^{N_{pole}} \frac{p_l}{x^2 + q_l} \right)$$

- Problem of near-zero modes of H_W.
 - Their density is non-zero at any finite β (Edwards, Heller, Narayanan, 1998)

Need to subtract before approximate = potentially $O(V^2)$

Near-zero mode suppression

- Near-zero modes are unphysical (associated with a local lump or dislocation = lattice artifact)
- lattice action to suppress them
 - Introduce unphysical (heavy negative mass) Wilson fermions (Vranas, JLQCD, 2006)

$$\det\left[\frac{H_{W}(-m_{0})^{2}}{H_{W}(-m_{0})^{2}+\mu^{2}}\right]$$

near-zero modes.

Topological freezing

 Suppress the dislocations, e.g. by adding extra Wilson fermions

 $\det\left[\frac{H_{W}(-m_{0})^{2}}{H_{W}(-m_{0})^{2}+\mu^{2}}\right]$

- Zero probability to have an exact zero-mode
- No chance to tunnel between different topological sectors.

- If the MD-type algorithm is used, the global topology never changes.
 - Provided that the step size is small enough.

Property of the continuum QCD: common for all lattice formulations as the continuum limit is approached.

Dynamical overlap

Recent attempts:

- Fodor-Katz-Szabo (2003)
 - Reflection/refraction trick
- Cundy et al. (2004)
 - Many algorithmic improvements
- DeGrand-Schaefer (2005)
 - Fat-link
 - Some physics results

Our project:

Aoki et al., arXiv:0803.3197 [hep-lat]

- Fixed topology
- Large scale simulation with $L \approx 2 \text{ fm}, m_q \sim m_s/6.$
- 2-flavor and 2+1-flavor runs

Broad physics program:

- Pion/kaon physics
- ε-regime
- Nucleon sigma term etc.

Parameters

 $N_f = 2 runs$

many physics analysis completed/on-going.

- β=2.30 (Iwasaki), a=0.12 fm, 16³x32
- 6 sea quark masses covering $m_s/6 \sim m_s$
- I0,000 HMC traj.
- Q=0 sector only, except Q=-2, -4 runs at $m_q=0.050$

N_f = 2+1 runs some physics analysis begun.

- β=2.30 (Iwasaki), a=0.11 fm, 16³x48
- 5 ud quark masses, covering m_s/6~m_s
- x 2 s quark masses
 - 2,500 HMC traj.
 - Using 5D solver
 - Q=0 sector only

Lattice spacing

- β fixed (= 2.30) with varying m_q
 - Overlap fermion: close to the mass independent renormalization = no O(am_a) term.
- Sommer scale r₀, from the static quark potential
 - ▶ N_f = 2
 - a = 0.118(2) fm

$$N_f = 2 + I$$

 $a = 0.108(2) \text{ fm}$

SELENE (KAGUYA)

2. Topology issues

Instanton behind the moon...?

Topology is fixed. Any problem?

- Yes = the real QCD vacuum is the θ-vacuum, a superposition of different topological sectors.
- > A serious problem for everyone
 - Topological tunneling occurs through rough gauge configs. If you observe frequent topology change, you are far apart from the continuum.
- A solution: accept it and reconstruct the θ-vacuum physics
 Aoki, Fukaya, SH, Onogi, PRD76, 054508 (2007)
 - Finite volume effect of O(I/V)
 - Topological susceptibility calculable on a fixed topology configs.

Cluster decomposition

- In QCD, the real vacuum has a certain distribution of the topological charge = the θ vacuum.
 - Required to satisfy the cluster decomposition property: topology distribution must satisfy

Ω_{I}	Ω_2

$$f(Q_1 + Q_2) = f(Q_1)f(Q_2)$$
$$f(Q) = e^{i\theta Q}$$

- Can one reproduce the physics of the θ vacuum from the fixed topology simulations?
 - Sum-up the topology! Or, not?

Sum-up the topology!

• Partition function of the vacuum $Z(\theta) = \exp[-VE(\theta)]$

- Vacuum energy density $E(\theta) = \frac{\chi_t}{2}\theta^2 + \frac{c_4}{12}\theta^4 + \dots$
- Partition function for a fixed Q

$$Z_{Q} = \frac{1}{2\pi} \int_{-\pi}^{+\pi} d\theta Z(\theta) e^{i\theta Q} = \frac{1}{2\pi} \int_{-\pi}^{+\pi} d\theta \exp\left[-VE(\theta) + i\theta Q\right]$$

• Using a saddle point expansion around $(\theta_c = iQ/V)$, one can evaluate the θ integral to obtain

$$Z_{Q} = \frac{1}{\sqrt{2\pi\chi_{t}V}} \exp\left[-\frac{Q^{2}}{2\chi_{t}V}\right] \left[1 - \frac{c_{4}}{8V\chi_{t}} + O\left(\frac{1}{\left(\chi_{t}V\right)^{2}}, \frac{Q^{2}}{\left(\chi_{t}V\right)^{2}}\right)\right]$$

• Then, the original partition function can be recovered, if one knows χ_t , c_4 , etc., as $Z(\theta) = \sum_{\alpha} Z_Q e^{-i\theta Q}$

Or, not?

Fixing topology = Finite volume effect

Brower et al., PLB560, 64 (2003); Aoki, Fukaya, SH, Onogi, PRD76, 054508 (2007)

- When the volume is large enough, the global topology is irrelevant.
- Topological charge fluctuate locally, according to χ_t , topological susceptibility.
- Physics of the θ-vacuum can be recovered by a similar saddle-point analysis, e.g. Some Green's function:

$$G_Q^{\text{CPeven}} = G(0) + G^{(2)}(0) \frac{1}{2\chi_t V} \left[1 - \frac{Q^2}{\chi_t V} - \frac{c_4}{2\chi_t^2 V} \right] + G^{(4)}(0) \frac{1}{8\chi_t^2 V^2} + \dots$$

Talk by Chiu, Tue 2:50, "Chesapeake B"

Topological susceptibility $\chi_t = \langle Q^2 \rangle / V$

• Applying the same formula for the flavor-singlet PS density, χ_t can be extracted.

$$\lim_{x \to \infty} \left\langle mP(x)mP(0) \right\rangle_Q = -\frac{1}{V} \left(\chi_t - \frac{Q^2}{V} + \dots \right) + O(e^{-m_{\eta} \cdot x})$$

arXiv:0710.1130 [hep-lat]

- Look at a (negative) constant correlation of the local topological charges.
- Found a clear plateau.
- Results from other topological sectors are consistent.

Sea quark mass dependence

Leutwyler-Smilga (1992)

$$\chi_t = m\Sigma / N_{f,} \quad \text{or}$$
$$\chi_t = \frac{\Sigma}{m_u^{-1} + m_d^{-1} + m_s^{-1}}$$

- N_f=2 done; 2+1 on-going
 - Disconnected loops constructed from low modes (saturation confirmed)

Clear evidence of the sea quark effects: 2 and 2+1.

- Fit with ChPT expectation
 - ▶ N_f=2:
 - $\Sigma = [242(5)(10) \text{ MeV}]3$

$$N_f = 2 + 1$$
:
 $\Sigma = [240(5)(2) \text{ MeV}]$

3. Physics applications

Chiral condensate

S Hashimoto (KEK) Jul 16, 2008

Chiral condensate

Thanks to the exact chiral symmetry, additive renormalization is prohibited.

$$(\bar{\psi}\psi)^{cont} = Z_S(\bar{\psi}\psi)^{lat} + Z_{mix} a^{(1)}^{lat}$$

- Many ways to extract
 - Banks-Casher relation
 - Low-lying eigenmodes (ChRMT)
 - ε-regime correlator
 - Topological susceptibility
 - GMOR relation

$$m_{\pi}^{2} = (m_{u} + m_{d}) \frac{\Sigma}{f^{2}} [1 + ...]$$

Banks-Casher relation $(N_f=2)$

πp(λ)/V

ε-regime

 Matching the low-lying eigenvalue distribution with Chiral Random Matrix Theory (ChRMT)

 $\Sigma = [251(7)(11) \text{ MeV}]^3$

 Matching the PS and A correlators with ε-regime ChPT

F = 87(6)(8) MeV $\Sigma = [240(4)(7) \text{ MeV}]^3$

Two-flavor results

 $\Sigma^{1/3}(2 \,\mathrm{GeV})$

S Hashimoto (KEK) Jul 16, 2008

Talk by Noaki, Tue 6:20, "Auditorium"

Convergence of chiral expansion

Chiral expansion

- The region of convergence is not known a priori.
- Test with lattice QCD; conceptually clear with exact chiral symmetry.

$$\frac{m_{\pi}^2}{m_q} = 2B \Big[1 + x \ln x + c_3 x + O(x^2) \Big],$$

$$f_{\pi} = f \left[1 - 2x \ln x + c_4 x + O(x^2) \right].$$

Expand in either

$$x \equiv \frac{m^2}{(4\pi f)^2}, \, \hat{x} \equiv \frac{m_\pi^2}{(4\pi f)^2}, \, \xi \equiv \frac{m_\pi^2}{(4\pi f_\pi)^2}$$

 ξ extends the region significantly.

S Hashimoto (KEK) Jul 16, 2008

Two-loop analysis

Analysis including NNLO

- With the ξ -expansion $m_{\pi}^2/m_q = 2B \left[1 + \xi \ln \xi + \frac{7}{2} (\xi \ln \xi)^2 + \left(\frac{c_4}{2f} - \frac{4}{3} (\tilde{l}^{\text{phys}} + 16) \right) \xi^2 \ln \xi \right] + c_3 \xi (1 - 9\xi \ln \xi) + \alpha \xi^2,$ $f_{\pi} = f \left[1 - 2\xi \ln \xi + 5(\xi \ln \xi)^2 + \frac{3}{2} (\tilde{l}^{\text{phys}} + \frac{53}{2}) \xi^2 \ln \xi \right] + c_4 \xi (1 - 10\xi \ln \xi) + \beta \xi^2.$
- For reliable extraction of the low energy constants, the NNLO terms are mandatory.

2+1 flavors

 Similar analysis including NNLO is on-going for 2+1flavor data. Preliminary results.

$$\overline{m}_{ud}$$
 (2GeV)=3.76(45) MeV,
 \overline{m}_{s} (2GeV)=116(12) MeV,
 $\frac{f_{K}}{f_{\pi}}$ = 1.201(30).

Talk by Noaki, Tue 6:20, "Auditorium"

Pion form factors

S Hashimoto (KEK) Jul 16, 2008

Pion form factors

- Another testing ground of ChPT
 - Vector and scalar $\langle \pi(p') | V_{\mu} | \pi(p) \rangle = i(p_{\mu} + p_{\mu}') F_{V}(q^{2}),$ $\langle \pi(p') | S | \pi(p) \rangle = F_{S}(q^{2}), q_{\mu} \equiv p_{\mu}' - p_{\mu}$
 - Charge and scalar radius

$$F_{V}(q^{2}) = 1 + \frac{1}{6} \left\langle r^{2} \right\rangle_{V}^{\pi} q^{2} + O(q^{4}),$$

$$F_{S}(q^{2}) = F_{S}(0) \left[1 + \frac{1}{6} \left\langle r^{2} \right\rangle_{S}^{\pi} q^{2} + O(q^{4}) \right],$$

Calculation using the all-to-all technique.

q² dependence well
 described by a vector
 meson pole + corrections.

$$F_{\pi}(q^2) = \frac{1}{1 - q^2 / m_V^2} + c_1 q^2 + \dots$$

Talk by Kaneko, Thu 9:10, "Chesapeake A"

All-to-all

- Disconnected diagram
 - Relevant for the scalar form factor.
 - Calculated using the all-to-all technique.

Disconnected contribution

 Lowmodes are averaged over space-time.

is visible.

 π, φ $(q^2=0)$

S Hashimoto (KEK) Jul 16, 2008

Chiral extrapolation

- Fit with NNLO ChPT
 - Data do not show clear evidence of the chiral log. But, it is expected to show up even smaller pion masses.
 - NNLO contribution is significant; necessary to reproduce the phenomenological values.

Vacuum polarization functions

S Hashimoto (KEK) Jul 16, 2008

Talk by Yamada, Fri 3:30, "Tidewater A"

Vacuum polarization functions

Vector and axial correlators in the momentum space.

$$\langle J_{\mu}J_{\nu}\rangle = \left(g_{\mu\nu}q^{2} - q_{\mu}q_{\nu}\right)\Pi_{J}^{(1)}(Q^{2}) - q_{\mu}q_{\nu}\Pi_{J}^{(0)}(Q^{2})$$

=
$$\int_{0}^{\infty} \frac{ds}{s - q^{2} + i\varepsilon} \left[\left(g_{\mu\nu}s^{2} - s_{\mu}s_{\nu}\right)\operatorname{Im}\Pi_{J}^{(1)}(s) - s_{\mu}s_{\nu}\operatorname{Im}\Pi_{J}^{(0)}(s) \right]$$

- Directly calculable on the lattice for space-like momenta
- Weinberg sum rules:

$$f_{\pi}^{2} = -\lim_{Q^{2} \to 0} Q^{2} \Big[\Pi_{V}^{(1+0)}(Q^{2}) - \Pi_{A}^{(1+0)}(Q^{2}) \Big],$$

$$S = -\lim_{Q^{2} \to 0} \frac{\partial}{\partial Q^{2}} Q^{2} \Big[\Pi_{V}^{(1+0)}(Q^{2}) - \Pi_{A}^{(1+0)}(Q^{2}) \Big] \quad \text{or } L_{10}$$

- Another probe of the chiral symmetry breaking.
- S is relevant for the precision EW test of new strong dynamics.

Talk by Yamada, Fri 3:30, "Tidewater A"

Pion electromagnetic mass splitting

Das-Guralnik-Mathur-Low-Young sum rule (1967)

$$\Delta m_{\pi}^{2} = -\frac{3\alpha_{\rm EM}}{4\pi f_{\pi}^{2}} \int_{0}^{\infty} dQ^{2} Q^{2} \left[\Pi_{V}^{(1+0)}(Q^{2}) - \Pi_{A}^{(1+0)}(Q^{2}) \right]$$

- Valid in the chiral limit (soft pion theorem)
- Gives dominant contribution to the π^{\pm} - π^{0} splitting.
- Related to the pseudo-NG boson mass in the context of new strong dynamics.
- Exact chiral symmetry is essential.
 - The quantity of interest is obtained after huge cancellation between V and A.

Lattice artifact

Lorentz violation + currents not conserving

$$\Pi_{J\mu\nu}(q) = \int d^4 x e^{iq \cdot x} \left\langle 0 \left| T \left[J_{\mu}(x) J_{\nu}(y) \right] \right| 0 \right\rangle = \sum_{n=0}^{\infty} B_J^{(n)} q_{\mu}^{2n} + \sum_{m,n=1}^{\infty} C_J^{(m,n)} q_{\mu}^{2m-1} q_{\nu}^{2n-1} \right\rangle$$

► J = V or A.

- Only $B_{J}^{(0)}$ and $C_{J}^{(1,1)}$ are physical.
- Thanks to the exact chiral symmetry, B_j and C_j are common (up to m_q) between V and A, thus cancel in V-A.

$$\Delta_J = \sum_{\mu,\nu} \hat{q}_{\mu} \hat{q}_{\nu} \left(\frac{1}{\hat{q}^2} - \frac{\hat{q}_{\nu}}{\sum_{\lambda} (\hat{q}_{\lambda})^3} \right) \Pi_{J\mu\nu}$$

Lattice results

- Can be fitted with
 - ChPT in the low q² region

$\Pi_{V-A}^{(1)}(q^2) = -\frac{f_{\pi}^2}{q^2} - 8L_{10}^r(\mu)$ $-\frac{1}{24\pi^2} \left[\ln \frac{m_{\pi}^2}{\mu^2} + \frac{1}{3} - H(x) \right]$ $L_{10} \text{ is extracted.}$

$$L_{10}^{r}(m_{\rho}) = -5.2(2)\binom{+0}{-3}\binom{+5}{-0} \times 10^{-3}$$

- OPE in the high q² region. In the massless limit, I/Q⁶ is the leading.
- Summing up the two regions, Δm_{π}^{2} is obtained.

arXiv:0806.4222 [hep-lat].

$$\Delta m_{\pi}^2 = 993(12)(^{+0}_{-135})(149) \text{ MeV}^2$$

Exp: $\Delta m_{\pi}^2 = 1261.2 \text{ MeV}^2$

Talk by Shintani, Fri 3:10, "Chesapeake A"

Strong coupling constant

- Matching of $\Pi_{J}^{(0+1)}(Q^2)$ with its perturbative expansion
 - Adler function

$$D_J(Q^2) \equiv -Q^2 \frac{d\Pi_J(Q^2)}{dQ^2}$$

is finite, renormalization scheme independent.

Lattice artifacts are nonperturbatively subtracted.

 $\langle J_{\mu}J_{\nu}\rangle^{\text{lat}}(Q) = \Pi_{J}^{(1)}(Q)Q^{2}\delta_{\mu\nu} - \Pi_{J}^{(0+1)}(Q)Q_{\mu}Q_{\nu}$

$$-\sum_{n=0} B_n^J(Q) Q_\mu^{2n} \delta_{\mu\nu} - \sum_{m,n=1} C_{mn}^J(Q) \left\{ Q_\mu^{2m+1} Q_\nu^{2n-1} + Q_\nu^{2m+1} Q_\mu^{2n-1} \right\}$$

Talk by Shintani, Fri 3:10, "Chesapeake A"

Strong coupling constant

 High Q² region described by OPE.

$$\Pi_{J}^{(0+1)}(Q^{2}) = c + C_{0}(Q^{2}, \mu^{2}) + \frac{C_{m}^{J}(Q^{2})}{Q^{2}} + C_{qq}^{J}(Q^{2}) \frac{\langle m\overline{q}q \rangle}{Q^{4}} + C_{GG}(Q^{2}) \frac{\langle \frac{\alpha_{s}}{\pi}GG \rangle}{Q^{4}} + \dots$$

0.14 0.13 0.12 c+C.(0².µ² (I+0) 0.1 <α /πGG>/0 A+V 0. 0.09 0.08 0.07 0.40.6 0.8 (aQ)

- Perturbative expansions known to α_s^2 .
- Chiral condensate is an input.

 $\Lambda_{MS}^{(2)} = 234(9)(^{+16}_{-0})\,\text{MeV}$

cf.) ALPHA: 250(16)(16) MeV QCDSF: 249(16)(25) MeV

Nucleon structure

S Hashimoto (KEK) Jul 16, 2008

Nucleon sigma term

 Finite quark mass effect on the nucleon mass

$$\sigma_{\pi N} = m_{ud} \left\langle N \left| \overline{u}u + \overline{d}d \right| N \right\rangle$$

- Contains both connected and disconected contrib.
- Strange quark content

 $y \equiv \frac{2\langle N | \overline{ss} | N \rangle}{\langle N | \overline{uu} + \overline{dd} | N \rangle}$

Disconnect contrib only.

- Feynman-Hellman theorem:
 - Relates them to derivatives of nucleon mass in terms of m_{val} and m_{sea}.

$$\frac{\partial M_{N}}{\partial m_{\text{val}}} = \langle N | \overline{u}u + \overline{d}d | N \rangle_{\text{conn}},$$
$$\frac{\partial M_{N}}{\partial m_{\text{sea}}} = \langle N | \overline{u}u + \overline{d}d | N \rangle_{\text{disc}}$$
$$\left(= 2 \langle N | \overline{s}s | N \rangle \right)$$

- Analysis with partially quenched data set (m_{val}≠m_{sea})
- Use PQChPT

Fit with HBChPT

Nucleon mass

Valence and Sea derivatives

- Finite volume effect significant.
- Downward shift observed $\sigma_{\pi N} = 52(2) \binom{+20}{-2} \binom{+5}{-0}$ MeV
- Disconnected contribution relatively small.

$$y = 0.030(16)\binom{+6}{-8}\binom{+1}{-2}$$

S Hashimoto (KEK) Jul 16, 2008

So what?

- Previous lattice results:
 - Fukugita et al. (1995) y = 0.66(15), quenched
 - Dong-Lagae-Liu (1996)
 y = 0.36(3), quenched
 - SESAM (1999) y = 0.59(13), N_f=2
 - UKQCD (2001)
 - $y = -0.28(33), N_f = 2$
 - JLQCD (2008)
 - $y = 0.030(18), N_f=2$

- Problem and solution
 - Was difficult to calculate due to m_{sea} dependence of m_{cr} = easily spoils the physical effect.
 - Problem persists in the quenched calculation.

- If subtracted, too large error.
- Exact chiral symmetry is the key.

Conclusion

Dynamical overlap fermion

- = clean approach producing interesting physics.
- Feasible with O(10 Tflops) machines
 - ▶ $16^3x48 \rightarrow 24^3x48$: test runs started
- Frozen topology = the property of continuum QCD
 - New strategy successful, e.g. topological susceptibility
- Physics applications (so far)
 - Chiral condensates
 - Test of continuum ChPT
 - Sum rules, OPE
 - Nucleon structure, flavor-singlet physics
 - More to come...

Backup slides

S Hashimoto (KEK) Jul 16, 2008

Locality

- Lattice Dirac operator must be local in order that a local theory is obtained in the continuum limit.
 - Locality is not obvious for the overlap operator due to $1/\sqrt{.}$

$$D = \frac{1}{a} \left[1 + \frac{X}{\sqrt{X^{\dagger} X}} \right], X = a D_{W} - 1$$

- Locality in the sense that |D|<exp(-µx), with µ a number of order 1/a, may be satisfied.
- "Proof" is known for smooth enough gauge canfigurations (Hernandez, Jansen, Luscher (1999)).
- No mathematical proof in more realistic situations where there is non-zero density of the near-zero modes.
 - \Rightarrow Okay if near-zero modes are always localized.

Locality

- Maybe analyzed by looking at individual eigenmodes of H_W.
 - Near-zero modes are more localized. Higher modes are extended. There is a critical value above which the modes are extended = "mobility edge" (Golterman, Shamir (2003)).

An important lessen: do not use the overlap fermion in the Aoki phase (where the near-zero modes are extended).

FAQ on topology fixing

I. Extra Wilson fermions:

Don't they spoil the continuum limit or the $O(a^2)$ scaling?

- No. They are heavy: $m \sim 1/a$. Low-lying modes of H_W are local and irrelevant in the continuum limit.
- 2. Ergordicity:
 - Is the ergordicity maintained?
 - No. HMC visits only the fixed topological sector. It restricts the path integral to a given Q. But the same physics can be obtained as explained above.
 - Probably yes, within a given Q.A fixed Q manifold is connected in the continuum theory. No proof on the lattice; no counter example, either. Lattice aims at approaching the continuum, anyway.

Measurement techniques

- Measurements at every 20 traj \Rightarrow 500 conf / m_{sea}
- Improved measurements
 - 50 pairs of low modes calculated and stored.
 - Used for low mode preconditioning (deflation)
 - \Rightarrow (multi-mass) solver is then x8 faster
 - Low mode averaging (and all-to-all)

$$D_m^{-1}(x, y) = \sum_{k=1}^N \frac{u_k(x)u_k^{\dagger}(y)}{\lambda_k + m} + D_m^{(h)-1}(x, y)$$

$$C(x, y) = C^{ll}(x, y) + C^{hh}(x, y) + C^{hh}(x, y) + C^{hl}(x, y) + C^{lh}(x, y)$$

$\Delta t_{i}, p \qquad V_{4} \qquad \Delta t'_{i}, p' \qquad Y_{5}, \varphi'$

All-to-all

To improve the signal

- Usually, the quark propagator is calculated with a fixed initial point (one-to-all)
- Average over initial point (or momentum config) will improve statistics; possible with all-to-all

$$D^{-1}(x, y) = \sum_{k=1}^{N_{ev}} \frac{1}{\lambda^{(k)}} u^{(k)}(x) u^{(k)\dagger}(y) + \sum_{d=1}^{N_d} \left[D_{high}^{-1} \eta^{(d)} \right] (x) \eta^{(d)}(y)$$

Random noise
Low mode contribution
High mode propagation
From the random noice

An example: two-point func

- Dramatic improvement of the signal, thanks to the averaging over source points
 - Similar to the low mode averaging; but all-to-all can be used for any npoint func.
 - PP correlator is dominated by the low-modes

B_{K}

First (unquenched) lattice calculation with exact chiral symmetry:

JLQCD collab, arXiv:0801.4186 [hep-lat].

$$\left\langle \overline{K}^{0} \left| O_{LL}(\mu) \right| K^{0} \right\rangle = \frac{8}{3} B_{K}(\mu) f_{K}^{2} m_{K}^{2}$$

- No problem of operator mixing; otherwise, mixes with O_{LR}, for instance. Enhanced by its wrong chiral behavior.
- Another test of chiral log. Here the data follows the NLO ChPT.

$$B_{P} = B_{P}^{\chi} \left[1 - \frac{6m_{P}^{2}}{(4\pi f)^{2}} \ln \frac{m_{P}^{2}}{\mu^{2}} + bm_{P}^{2} + O(m_{P}^{4}) \right]$$

 $B_K(2\text{GeV}) = 0.534(5)(30)$

