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JLQCD
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S. Aoki, N. Ishizuka, K. Kanaya, Y. Kuramashi, Y. Taniguchi, A. Ukawa, T. 
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BlueGene/L (10 racks, 57.3 Tflops)



Project: dynamical overlap fermions
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Theoretically clean =
Respect the symmetry
Slow to develop…



Project: dynamical overlap fermions
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First large scale simulation with exact chiral symmetry

Theoretical interest

• Dirac operator 
spectrum: Banks-Casher 
relation, chiral RMT

• Chiral symmetry 
breaking: chiral
condensate and related

• Topology: θ-vacuum, 
topological susceptibility

Phenomenological 
interest

• Controlled chiral
extrapolation with the 
continuum ChPT

• Physics applications: BK, 
form factors, etc.

• Sum rules, OPE
• Flavor-singlet physics
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1. Simulation status
Overlap implementation, runs, …

2. Topology issues
Physics from fixed topology
Topological susceptibility

3. Physics applications
Chiral condensate
Convergence of the chiral expansion (mπ, fπ)
Pion form factor, BK

VV-AA, αs
Nucleon sigma-term, strange content



1. Simulation status

See also, Matsufuru, poster session



Overlap fermion
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Neuberger-Narayanan (1998)

Exact chiral symmetry through the Ginsparg-Wilson 
relation.

Continuum-like Ward-Takahashi identities hold
Index theorem (relation to topology) satisfied

[ ]

†

5 5

1 1 , 1

1 1 sgn( ) , ( 1)

W

W W W

XD X aD
a X X

aH aH aD
a

γ γ

⎡ ⎤
= + = −⎢ ⎥

⎣ ⎦

= + = −

DaDDD 555 γγγ =+



Sign function
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Rational approximation 
(Zolotarev)

Problem of near-zero modes 
of HW.

Their density is non-zero at 
any finite β (Edwards, Heller, 
Narayanan, 1998)0 2

1
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l

l l

px x p
x q

ε
=

⎛ ⎞
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∑

Need to subtract before approximate
= potentially O(V2)



Near-zero mode suppression
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Near-zero modes are 
unphysical (associated with a 
local lump or dislocation = 
lattice artifact)

lattice action to suppress 
them

Introduce unphysical (heavy 
negative mass) Wilson 
fermions (Vranas, JLQCD, 2006)

⎥
⎦

⎤
⎢
⎣

⎡
+−

−
22

0

2
0

)(
)(det
μmH

mH

W

W

Plaquette gauge, 
β=5.83, μ=0; β=5.70, μ=0.2

Completely wash-out the 
near-zero modes. 



Suppress the dislocations, e.g. 
by adding extra Wilson 
fermions

Zero probability to have an 
exact zero-mode

No chance to tunnel between 
different topological sectors.

Topological freezing
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If the MD-type algorithm is 
used, the global topology 
never changes.

Provided that the step size is 
small enough.

Property of the continuum QCD: common for all lattice 
formulations as the continuum limit is approached.
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Dynamical overlap
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Recent attempts:

Fodor-Katz-Szabo (2003)
Reflection/refraction trick

Cundy et al. (2004)
Many algorithmic improvements

DeGrand-Schaefer (2005)
Fat-link
Some physics results

Our project:
Aoki et al.,  arXiv:0803.3197 [hep-lat] 

Fixed topology
Large scale simulation with L 
≈ 2 fm, mq~ms/6.
2-flavor and 2+1-flavor runs

Broad physics program:
Pion/kaon physics
ε-regime
Nucleon sigma term etc.



Parameters
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Nf = 2 runs
many physics analysis 
completed/on-going.

β=2.30 (Iwasaki), a=0.12 fm, 
163x32
6 sea quark masses covering 
ms/6~ms

10,000 HMC traj.
Q=0 sector only, except 
Q=−2, −4 runs at mq=0.050 

Nf = 2+1 runs
some physics analysis begun.

β=2.30 (Iwasaki), a=0.11 fm, 
163x48
5 ud quark masses, covering 
ms/6~ms

x 2 s quark masses
2,500 HMC traj.

Using 5D solver

Q=0 sector only



Lattice spacing
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β fixed (= 2.30) with 
varying mq

Overlap fermion:  close to 
the mass independent 
renormalization = no 
O(amq) term.

Sommer scale r0, from the 
static quark potential

Nf = 2
a = 0.118(2) fm
Nf = 2+1
a = 0.108(2) fm

Nf=2+1

Nf=2



2. Topology issues

Instanton behind the moon…?

SELENE (KAGUYA)



Topology is fixed. Any problem?
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Yes = the real QCD vacuum is the θ-vacuum, a 
superposition of different topological sectors.
A serious problem for everyone

Topological tunneling occurs through rough gauge configs. If 
you observe frequent topology change, you are far apart from 
the continuum.

A solution: accept it and reconstruct the θ-vacuum physics

Finite volume effect of O(1/V)
Topological susceptibility calculable on a fixed topology configs.

Aoki, Fukaya, SH, Onogi, PRD76, 054508 (2007)



Cluster decomposition
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In QCD, the real vacuum has a certain distribution of the 
topological charge = the θ vacuum.

Required to satisfy the cluster decomposition property: 
topology distribution must satisfy

Can one reproduce the physics of the θ vacuum from the 
fixed topology simulations?

Sum-up the topology! Or, not?

Ω1 Ω2
1 2 1 2( ) ( ) ( )f Q Q f Q f Q+ =

( ) i Qf Q e θ=



Sum-up the topology!
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Partition function of the vacuum

Vacuum energy density E(θ)
Partition function for a fixed Q

Using a saddle point expansion around (θc=iQ/V), one can 
evaluate the θ integral to obtain

Then, the original partition function can be recovered, if one 
knows χt, c4, etc., as
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Or, not?
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Fixing topology = Finite volume effect

When the volume is large enough, the global topology is 
irrelevant.
Topological charge fluctuate locally, according to χt, 
topological susceptibility.
Physics of the θ-vacuum can be recovered by a similar 
saddle-point analysis, e.g.  Some Green’s function:

Brower et al., PLB560, 64 (2003); Aoki, Fukaya, SH, Onogi, PRD76, 054508 (2007)

2
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Topological susceptibility χt=〈Q2〉/V
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Applying the same formula for the flavor-singlet PS density, 
χt can be extracted.

'
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Look at a (negative) constant 
correlation of the local 
topological charges.

• Found a clear plateau.
• Results from other 

topological sectors are 
consistent.

Nf=2 example

Talk by Chiu, Tue 2:50, “Chesapeake B”

arXiv:0710.1130 [hep-lat]



Sea quark mass dependence
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Nf=2 done; 2+1 on-going
Disconnected loops 
constructed from low modes 
(saturation confirmed)

Fit with ChPT expectation
Nf=2: 
Σ = [242(5)(10) MeV]3
Nf=2+1:
Σ = [240(5)(2) MeV]3

,

1 1 1

/ ort f

t
u d s

m N

m m m

χ

χ − − −

= Σ

Σ
=

+ +

Talk by Chiu, Tue 2:50, “Chesapeake B”

Leutwyler-Smilga (1992)

Clear evidence of the sea 
quark effects: 2 and 2+1.

Nf=2+1

Nf=2



3. Physics applications



Chiral condensate
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Chiral condensate
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Thanks to the exact chiral
symmetry, additive 
renormalization is prohibited.

Many ways to extract
Banks-Casher relation
Low-lying eigenmodes (ChRMT)
ε-regime correlator
Topological susceptibility
GMOR relation

3

1( ) ( ) (1)cont lat lat
S mixZ Z

a
ψψ ψψ= +

[ ]2
2( ) 1 ...u dm m m

fπ
Σ

= + +

Banks-Casher relation (Nf=2)



ε-regime
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Matching the low-lying 
eigenvalue distribution with 
Chiral Random Matrix 
Theory (ChRMT)

Matching the PS and A 
correlators with ε-regime 
ChPT

Σ = [ 251(7)(11) MeV]3
F = 87(6)(8) MeV
Σ = [ 240(4)(7) MeV]3



Two-flavor results
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1/3 (2GeV)Σ

Phys. Rev. Lett 98, 172001 (2007)

Phys. Rev. D76, 054503 (2007)

Phys. Rev. D77, 074503 (2008)

arXiv:0710.1130 [hep-lat]

arXiv:0806.0894 [hep-lat]

In good agreement



mπ and fπ
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Convergence of chiral expansion
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Chiral expansion
The region of convergence is not 
known a priori. 
Test with lattice QCD; 
conceptually clear with exact 
chiral symmetry.

Expand in either
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ξ extends the region significantly.

arXiv:0806.0894 [hep-lat]

Talk by Noaki, Tue 6:20, “Auditorium”



Two-loop analysis
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Analysis including NNLO
With the ξ-expansion

For reliable extraction of the 
low energy constants, the 
NNLO terms are mandatory.

Talk by Noaki, Tue 6:20, “Auditorium”



2+1 flavors
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Similar analysis including 
NNLO is on-going for 2+1-
flavor data. Preliminary results.

Talk by Noaki, Tue 6:20, “Auditorium”

(2GeV)=3.76(45) MeV,
(2GeV)=116(12) MeV,

1.201(30).

ud

s

K

m
m
f
fπ

=



Pion form factors
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Pion form factors
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Another testing ground of 
ChPT

Vector and scalar

Charge and scalar radius

Calculation using the all-to-all 
technique.
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q2 dependence well 
described by a vector 
meson pole + corrections.

Vector form factor

Talk by Kaneko, Thu 9:10, “Chesapeake A”



All-to-all
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Disconnected diagram
Relevant for the scalar form 
factor.
Calculated using the all-to-all 
technique.
Lowmodes are averaged 
over space-time.

Disconnected contribution 
is visible.

Talk by Kaneko, Thu 9:10, “Chesapeake A”



Chiral extrapolation
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Fit with NNLO ChPT
Data do not show clear evidence of the chiral log. But, it is 
expected to show up even smaller pion masses.
NNLO contribution is significant; necessary to reproduce the 
phenomenological values.

Talk by Kaneko, Thu 9:10, “Chesapeake A”
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Vacuum polarization functions
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Vacuum polarization functions
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Vector and axial correlators in the momentum space.

Directly calculable on the lattice for space-like momenta

Weinberg sum rules:

Another probe of the chiral symmetry breaking.
S is relevant for the precision EW test of new strong dynamics.
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Talk by Yamada, Fri 3:30, “Tidewater A”



Pion electromagnetic mass splitting
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Das-Guralnik-Mathur-Low-Young sum rule (1967)

Valid in the chiral limit (soft pion theorem)
Gives dominant contribution to the π±-π0 splitting.
Related to the pseudo-NG boson mass in the context of new 
strong dynamics.

Exact chiral symmetry is essential.
The quantity of interest is obtained after huge cancellation 
between V and A.

2 2 2 (1 0) 2 (1 0) 2EM
2
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4 V Am dQ Q Q Q

fπ
π

α
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∞
+ +⎡ ⎤Δ = − Π −Π⎣ ⎦∫

Talk by Yamada, Fri 3:30, “Tidewater A”



Lattice artifact
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Lorentz violation + currents not 
conserving 

J = V or A.
Only BJ

(0) and CJ
(1,1) are physical.

Thanks to the exact chiral
symmetry, BJ and CJ are common 
(up to mq) between V and A, thus 
cancel in V-A.

Talk by Yamada, Fri 3:30, “Tidewater A”

4 ( ) 2 ( , ) 2 1 2 1

0 , 1
( ) 0 ( ) ( ) 0iq x n n m n m n

J J J
n m n

q d xe T J x J y B q C q qμν μ ν μ μ ν

∞ ∞
⋅ − −

= =

⎡ ⎤Π = = +⎣ ⎦ ∑ ∑∫



Lattice results
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Can be fitted with
ChPT in the low q2 region

L10 is extracted.

OPE in the high q2 region. In 
the massless limit, 1/Q6 is the 
leading.
Summing up the two regions, 
Δmπ

2 is obtained.

Talk by Yamada, Fri 3:30, “Tidewater A”
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Strong coupling constant
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Matching of ΠJ
(0+1)(Q2) with its 

perturbative expansion
Adler function

is finite, renormalization scheme 
independent.

Lattice artifacts are non-
perturbatively subtracted.

Talk by Shintani, Fri 3:10, “Chesapeake A”
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Strong coupling constant
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High Q2 region described 
by OPE.

Perturbative expansions 
known to αs

2.
Chiral condensate is an input.

Talk by Shintani, Fri 3:10, “Chesapeake A”
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Nucleon structure
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Nucleon sigma term
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Finite quark mass effect 
on the nucleon mass

Contains both connected 
and disconected contrib.

Strange quark content

Disconnect contrib only.

Feynman-Hellman theorem:
Relates them to derivatives 
of nucleon mass in terms of 
mval and msea. 

Analysis with partially 
quenched data set (mval≠msea)
Use PQChPT
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≡
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2
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Talk by Ohki, Thu 9:50, “Auditorium”



Fit with HBChPT
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Nucleon mass

Finite volume effect 
significant.
Downward shift observed 
(non-analytic ~gA

2mπ
3)

Valence and Sea derivatives

Disconnected contribution 
relatively small.

20 5
2 052(2)( )( ) MeVNπσ

+ +
− −= 6 1

8 20.030(16)( )( )y + +
− −=

Talk by Ohki, Thu 9:50, “Auditorium”
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finite volume corrected



So what?
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Previous lattice results:
Fukugita et al. (1995)
y = 0.66(15), quenched
Dong-Lagae-Liu (1996)
y = 0.36(3), quenched
SESAM (1999)
y = 0.59(13), Nf=2

UKQCD (2001)
y = −0.28(33), Nf=2
JLQCD (2008)
y = 0.030(18), Nf=2

Problem and solution
Was difficult to calculate 
due to msea dependence of 
mcr.= easily spoils the 
physical effect.
Problem persists in the 
quenched calculation.

If subtracted, too large 
error.
Exact chiral symmetry is 
the key.

Talk by Ohki, Thu 9:50, “Auditorium”



Conclusion
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= clean approach producing interesting physics.
Feasible with O(10 Tflops) machines

163x48 → 243x48: test runs started
Frozen topology = the property of continuum QCD

New strategy successful, e.g. topological susceptibility
Physics applications (so far)

Chiral condensates
Test of continuum ChPT
Sum rules, OPE
Nucleon structure, flavor-singlet physics
More to come…



Backup slides
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Locality
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Lattice Dirac operator must be local in order that a local 
theory is obtained in the continuum limit.

Locality is not obvious for the overlap operator due to 1/√.

Locality in the sense that |D|<exp(-μx), with μ a number of 
order 1/a, may be satisfied.
“Proof” is known for smooth enough gauge canfigurations
(Hernandez, Jansen, Luscher (1999)).
No mathematical proof in more realistic situations where 
there is non-zero density of the near-zero modes.
⇒ Okay if near-zero modes are always localized.

†

1 1 , 1W
XD X aD

a X X

⎡ ⎤
= + = −⎢ ⎥

⎣ ⎦



Locality
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Maybe analyzed by looking at individual eigenmodes of 
HW. 

Near-zero modes are more localized. Higher modes are 
extended. There is a critical value above which the modes are 
extended = “mobility edge” (Golterman, Shamir (2003)).

An important lessen: do not use the overlap fermion in the 
Aoki phase (where the near-zero modes are extended).



FAQ on topology fixing
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1. Extra Wilson fermions:
Don’t they spoil the continuum limit or the O(a2) scaling?

No. They are heavy: m~1/a. Low-lying modes of HW are local 
and irrelevant in the continuum limit.

2. Ergordicity:  
Is the ergordicity maintained?

No. HMC visits only the fixed topological sector. It restricts 
the path integral to a given Q. But the same physics can be 
obtained as explained above.
Probably yes, within a given Q. A fixed Q manifold is 
connected in the continuum theory. No proof on the lattice; 
no counter example, either. Lattice aims at approaching the 
continuum, anyway.



Measurement techniques
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Measurements at every 20 traj ⇒
500 conf / msea

Improved measurements
50 pairs of low modes calculated 
and stored.
Used for low mode preconditioning 
(deflation) 
⇒ (multi-mass) solver is then x8 
faster
Low mode averaging
(and all-to-all)
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All-to-all
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To improve the signal
Usually, the quark propagator is calculated with a fixed initial 
point (one-to-all)
Average over initial point (or momentum config) will improve 
statistics; possible with all-to-all

1 ( ) ( )† 1 ( ) ( )
( )

1 1

1( , ) ( ) ( ) ( ) ( )
ev dN N

k k d d
highk

k d
D x y u x u y D x yη η

λ
− −

= =

⎡ ⎤= + ⎣ ⎦∑ ∑

Low mode contribution
Random noise

High mode propagation
From the random noice



An example: two-point func
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Dramatic improvement of the 
signal, thanks to the averaging 
over source points

Similar to the low mode averaging; 
but all-to-all can be used for any n-
point func.
PP correlator is dominated by the 
low-modes 
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First (unquenched) lattice calculation 
with exact chiral symmetry:
JLQCD collab, arXiv:0801.4186 [hep-lat].

No problem of operator mixing; 
otherwise, mixes with OLR, for 
instance. Enhanced by its wrong 
chiral behavior.
Another test of chiral log. Here the 
data follows the NLO ChPT.
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