Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD

Uwe-Jens Wiese

Bern University

LATTICE08, Williamsburg, July 14, 2008

S. Chandrasekharan (Duke University)F.-J. Jiang, F. Kämpfer, M. Nyfeler (Bern University)M. Pepe (INFN, Milano University)

From Graphene to Ni_xCoO₂

Rotor Spectrum at Half-Filling

Rotor Spectrum in the Single-Hole Sector

Rotor Spectrum in the QCD Vacuum Sector

Rotor Spectrum in the Single-Nucleon Sector

Conclusions

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

From Graphene to Ni_xCoO₂

Rotor Spectrum at Half-Filling

Rotor Spectrum in the Single-Hole Sector

Rotor Spectrum in the QCD Vacuum Sector

Rotor Spectrum in the Single-Nucleon Sector

Conclusions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

The Hubbard model on the honeycomb lattice

Local charge and spin operators

$$Q_x = c_x^{\dagger} c_x - 1, \quad ec{S}_x = c_x^{\dagger} \; rac{ec{\sigma}}{2} \; c_x, \quad [S_x^a, S_y^b] = i \delta_{xy} arepsilon_{abc} S_x^c$$

 $U(1)_Q$ and $SU(2)_s$ symmetries

$$Q = \sum_{x} Q_{x}, \quad \vec{S} = \sum_{x} \vec{S}_{x}, \quad [H, Q] = [H, \vec{S}] = 0$$

3

Unbroken $SU(2)_s$ symmetric phase (graphene) at $U < U_c$

Brillouin zone

Dispersion relation

・ロト ・聞ト ・ヨト ・ヨト

- 3

Effective Dirac Lagrangian for free graphene

$$\mathcal{L} = \sum_{\substack{f=\alpha,\beta\\s=+,-}} \overline{\psi}_{s}^{f} \gamma_{\mu} \partial_{\mu} \psi_{s}^{f}$$

The *t*-*J* model for the antiferromagnetic $SU(2)_s$ broken symmetry phase (Ni_xCoO₂) at $U \gg U_c$

$$H = P \bigg\{ -t \sum_{\langle xy \rangle} (c_x^{\dagger} c_y + c_y^{\dagger} c_x) + J \sum_{\langle xy \rangle} \vec{S}_x \cdot \vec{S}_y \bigg\} P.$$

reduces to the Heisenberg model at half-filling

$$H = J \sum_{\langle xy \rangle} \vec{S}_x \cdot \vec{S}_y$$

Effective Goldstone boson field in $SU(2)/U(1) = S^2$

$$\vec{e}(x) = (e_1(x), e_2(x), e_3(x)), \qquad \vec{e}(x)^2 = 1$$

Low-energy effective action for magnons

$$S[\vec{e}] = \int d^2x \ dt \ \frac{\rho_s}{2} \left(\partial_i \vec{e} \cdot \partial_i \vec{e} + \frac{1}{c^2} \partial_t \vec{e} \cdot \partial_t \vec{e} \right)$$

Fit to predictions in the ε -regime of magnon chiral perturbation theory with $\beta c \approx L$, $I = (\beta c/L)^{1/3}$

$$\chi_{s} = \frac{\mathcal{M}_{s}^{2} L^{2} \beta}{3} \left\{ 1 + 2 \frac{c}{\rho_{s} L l} \beta_{1}(l) + \left(\frac{c}{\rho_{s} L l}\right)^{2} \left[\beta_{1}(l)^{2} + 3\beta_{2}(l)\right] \right\}$$

$$\chi_{u} = \frac{2\rho_{s}}{3c^{2}} \left\{ 1 + \frac{1}{3} \frac{c}{\rho_{s} L l} \widetilde{\beta}_{1}(l) + \frac{1}{3} \left(\frac{c}{\rho_{s} L l} \right)^{2} \left[\widetilde{\beta}_{2}(l) - \frac{1}{3} \widetilde{\beta}_{1}(l)^{2} - 6\psi(l) \right] \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

From Graphene to Ni_xCoO₂

Rotor Spectrum at Half-Filling

Rotor Spectrum in the Single-Hole Sector

Rotor Spectrum in the QCD Vacuum Sector

Rotor Spectrum in the Single-Nucleon Sector

Conclusions

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

Effective Lagrange function in the δ -regime of magnon chiral perturbation theory with $\beta c \gg L$

$$\mathcal{L} = \int d^2 x \; \frac{\rho_s}{2} \left(\partial_i \vec{e} \cdot \partial_i \vec{e} + \frac{1}{c^2} \partial_t \vec{e} \cdot \partial_t \vec{e} \right) = \frac{\Theta}{2} \partial_t \vec{e} \cdot \partial_t \vec{e}$$

Moment of inertia

$$\Theta = \frac{\rho_s L^2}{c^2} \left[1 + \frac{3.900265}{4\pi} \frac{c}{\rho_s L} + \mathcal{O}\left(\frac{1}{L^2}\right) \right]$$

P. Hasenfratz and F. Niedermayer, Z. Phys. B92 (1993) 91

Spherical coordinates for the staggered magnetization

$$\vec{e} = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$$

Effective Lagrange function

$$\mathcal{L} = \frac{\Theta}{2} \partial_t \vec{e} \cdot \partial_t \vec{e} = \frac{\Theta}{2} \left[(\partial_t \theta)^2 + \sin^2 \theta (\partial_t \varphi)^2 \right]$$

Canonically conjugate momenta

$$p_{\theta} = rac{\delta \mathcal{L}}{\delta \partial_t \theta} = \Theta \ \partial_t \theta, \ p_{\varphi} = rac{\delta \mathcal{L}}{\delta \partial_t \varphi} = \Theta \ \sin^2 \theta \ \partial_t \varphi$$

Quantum mechanical rotor Hamiltonian

$$H = -\frac{1}{2\Theta} \left(\frac{1}{\sin \theta} \partial_{\theta} [\sin \theta \partial_{\theta}] + \frac{1}{\sin^2 \theta} \partial_{\varphi}^2 \right) = \frac{\vec{S}^2}{2\Theta}$$

Rotor spectrum

$$E_S = \frac{S(S+1)}{2\Theta}$$

Probability distribution of magnetization $M^3 = S^3$

$$p(M^3) = \frac{1}{Z} \sum_{S \ge |M^3|} \exp(-\beta E_S), \quad Z = \sum_{S=0}^{\infty} (2S+1) \exp(-\beta E_S)$$

Honeycomb Lattice, 836 Spins, $\beta J = 60$

Perfect agreement without additional adjustable parameters

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

From Graphene to Ni_xCoO₂

Rotor Spectrum at Half-Filling

Rotor Spectrum in the Single-Hole Sector

Rotor Spectrum in the QCD Vacuum Sector

Rotor Spectrum in the Single-Nucleon Sector

Conclusions

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Hole dispersion in the t-J model

Effective Lagrangian for Holes

$$\mathcal{L} = \sum_{\substack{f=\alpha,\beta\\s=+,-}} \left[M \psi_s^{f\dagger} \psi_s^f + \psi_s^{f\dagger} D_t \psi_s^f + \frac{1}{2M'} D_i \psi_s^{f\dagger} D_i \psi_s^f \right]$$

Covariant derivative coupling to composite magnon gauge field

$$D_{\mu}\psi^{f}_{\pm}(x) = \left[\partial_{\mu} \pm i v^{3}_{\mu}(x)\right]\psi^{f}_{\pm}(x)$$

くして 前 ふかく 山下 ふゆう ふしゃ

Effective Lagrange function for quantum mechanical rotor

$$\mathcal{L} = \frac{\Theta}{2} \partial_t \vec{e} \cdot \partial_t \vec{e} + \sum_{f=\alpha,\beta} \Psi^{f\dagger} \left[E(\vec{p}) - i\partial_t + v_t^3 \sigma_3 \right] \Psi^f, \Psi(t) = \begin{pmatrix} \psi_+^f(t) \\ \psi_-^f(t) \end{pmatrix}$$

 \sim

Spherical coordinates for the staggered magnetization

$$\vec{e} = (\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta) \Rightarrow v_t^3 = \sin^2\frac{\theta}{2}\partial_t\varphi$$

Canonically conjugate momenta

$$\Theta \ \partial_t \theta = p_{\theta}, \quad \Theta \ \partial_t \varphi = \frac{1}{\sin^2 \theta} (p_{\varphi} + iA_{\varphi})$$

Abelian monopole Berry gauge field

$$A_{\theta} = 0, \quad A_{\varphi} = i \sin^2 \frac{\theta}{2} \sigma_3, \quad F_{\theta\varphi} = \partial_{\theta} A_{\varphi} - \partial_{\varphi} A_{\theta} = \frac{i}{2} \sin \theta \ \sigma_3$$

Rotor Hamiltonian in the single-hole sector

$$H = -\frac{1}{2\Theta} \left\{ \frac{1}{\sin \theta} \partial_{\theta} [\sin \theta \partial_{\theta}] + \frac{1}{\sin^2 \theta} (\partial_{\varphi} - A_{\varphi})^2 \right\} + E(\vec{p})$$
$$= \frac{1}{2\Theta} \left(\vec{J}^2 - \frac{1}{4} \right) + E(\vec{p})$$

Angular momentum operators

$$J_{\pm} = \exp(\pm i\varphi) \left(\pm \partial_{\theta} + i\cot\theta \ \partial_{\varphi} - \frac{1}{2}\tan\frac{\theta}{2}\sigma_3 \right), \quad J_3 = -i\partial_{\varphi} - \frac{\sigma_3}{2}$$

Energy spectrum

$$E_j = rac{1}{2\Theta}\left[j(j+1) - rac{1}{4}
ight] + E(ec{p}), \quad j \in \{rac{1}{2}, rac{3}{2}, rac{5}{2}, ...\}$$

Wave functions are monopole harmonics

$$Y_{\frac{1}{2},\pm\frac{1}{2}}^{\pm}(\theta,\varphi) = \frac{1}{\sqrt{2\pi}} \sin\frac{\theta}{2} \exp(\pm i\varphi), \quad Y_{\frac{1}{2},\pm\frac{1}{2}}^{\pm}(\theta,\varphi) = \frac{1}{\sqrt{2\pi}} \cos\frac{\theta}{2}$$

From Graphene to Ni_xCoO₂

Rotor Spectrum at Half-Filling

Rotor Spectrum in the Single-Hole Sector

Rotor Spectrum in the QCD Vacuum Sector

Rotor Spectrum in the Single-Nucleon Sector

Conclusions

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ 差 − のへぐ

Rotor Lagrange function in massless $N_f = 2$ QCD

$$\mathcal{L} = \int d^3x \; \frac{F_\pi^2}{4} \mathrm{Tr} \left[\partial_\mu U^{\dagger} \partial_\mu U \right] = \frac{\Theta}{4} \mathrm{Tr} \left[\partial_t U^{\dagger} \partial_t U \right], \quad \Theta = F_\pi^2 L^3$$

Rotor spectrum

$$E_{l} = \frac{j_{L}(j_{L}+1) + j_{R}(j_{R}+1)}{\Theta} = \frac{l(l+2)}{2\Theta}$$

Rotor quantum numbers

$$j_L = j_R, \quad l = j_L + j_R \in \{0, 1, 2, ...\}$$

Degeneracy

$$g = (2j_L + 1)(2j_R + 1) = (l + 1)^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

H. Leutwyler, Phys. Lett. B189 (1987) 197

From Graphene to Ni_xCoO₂

Rotor Spectrum at Half-Filling

Rotor Spectrum in the Single-Hole Sector

Rotor Spectrum in the QCD Vacuum Sector

Rotor Spectrum in the Single-Nucleon Sector

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Effective Lagrange function for quantum mechanical rotor

$$\mathcal{L} = \frac{\Theta}{4} \operatorname{Tr} \left[\partial_t U^{\dagger} \partial_t U \right] + \Psi^{\dagger} \left[E(\vec{p}) - i \partial_t - i v_t - i \frac{g_A}{M} (\vec{\sigma} \cdot \vec{p}) a_t \right] \Psi$$

Gauge and vector fields composed of pion fields $U = u^2$

$$v_t = \frac{1}{2} \left(u \partial_t u^{\dagger} + u^{\dagger} \partial_t u \right), \quad a_t = \frac{1}{2i} \left(u \partial_t u^{\dagger} - u^{\dagger} \partial_t u \right)$$

Spherical coordinates for the pion field

$$U = \cos \alpha + i \sin \alpha \vec{e}_{\alpha} \cdot \vec{\tau}, \quad \vec{e}_{\alpha} = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta), \\ \vec{e}_{\theta} = (\cos \theta \cos \varphi, \cos \theta \sin \varphi, -\sin \theta), \quad \vec{e}_{\varphi} = (-\sin \varphi, \cos \varphi, 0)$$

Concrete form of gauge and vector fields

$$v_{t} = i \sin^{2} \frac{\alpha}{2} \left(\partial_{t} \theta \ \vec{e}_{\varphi} - \sin \theta \ \partial_{t} \varphi \ \vec{e}_{\theta} \right) \cdot \vec{\tau},$$
$$a_{t} = \left(\frac{\partial_{t} \alpha}{2} \vec{e}_{\alpha} + \sin \alpha \frac{\partial_{t} \theta}{2} \vec{e}_{\theta} + \sin \alpha \sin \theta \frac{\partial_{t} \varphi}{2} \vec{e}_{\varphi} \right) \cdot \vec{\tau}$$

Rotor Hamiltonian in the single-nucleon sector

$$H = E(\vec{p}) - \frac{1}{2\Theta} \left\{ \frac{1}{\sin^2 \alpha} (\partial_\alpha - A_\alpha) [\sin^2 \alpha (\partial_\alpha - A_\alpha)] + \frac{1}{\sin^2 \alpha \sin \theta} (\partial_\theta - A_\theta) [\sin \theta (\partial_\theta - A_\theta)] + \frac{1}{\sin^2 \alpha \sin^2 \theta} (\partial_\varphi - A_\varphi)^2 \right\}$$

Non-Abelian monopole Berry gauge field ($\Lambda = g_A |\vec{p}|/M$)

$$\begin{aligned} A_{\alpha} &= i\frac{\Lambda}{2}(\vec{\sigma}\cdot\vec{e}_{\rho})\vec{e}_{\alpha}\cdot\vec{\tau}, \ A_{\theta} = i\left(\sin^{2}\frac{\alpha}{2}\ \vec{e}_{\varphi} + \frac{\Lambda}{2}(\vec{\sigma}\cdot\vec{e}_{\rho})\sin\alpha\ \vec{e}_{\theta}\right)\cdot\vec{\tau}, \\ A_{\varphi} &= i\left(-\sin^{2}\frac{\alpha}{2}\sin\theta\ \vec{e}_{\theta} + \frac{\Lambda}{2}(\vec{\sigma}\cdot\vec{e}_{\rho})\sin\alpha\sin\theta\ \vec{e}_{\varphi}\right)\cdot\vec{\tau} \\ F_{\alpha\theta} &= \partial_{\alpha}A_{\theta} - \partial_{\theta}A_{\alpha} + [A_{\alpha},A_{\theta}] = i\frac{1-\Lambda^{2}}{2}\sin\alpha\ \vec{e}_{\varphi}\cdot\vec{\tau}, \\ F_{\theta\varphi} &= \partial_{\theta}A_{\varphi} - \partial_{\varphi}A_{\theta} + [A_{\theta},A_{\varphi}] = i\frac{1-\Lambda^{2}}{2}\sin^{2}\alpha\ \sin\theta\ \vec{e}_{\alpha}\cdot\vec{\tau}, \\ F_{\varphi\alpha} &= \partial_{\varphi}A_{\alpha} - \partial_{\alpha}A_{\varphi} + [A_{\varphi},A_{\alpha}] = i\frac{1-\Lambda^{2}}{2}\sin\alpha\ \sin\theta\ \vec{e}_{\theta}\cdot\vec{\tau} \end{aligned}$$

Rotor Hamiltonian with $\Lambda = g_A |\vec{p}| / M$

$$\begin{split} H &= \frac{1}{2\Theta} \left(\vec{J}^2 + \vec{K}^2 - \frac{3}{4} \right) + \frac{1}{2\Theta} \left(\Lambda C + \frac{3}{4} \Lambda^2 \right), \\ C &= i (\vec{\sigma} \cdot \vec{e}_p) \left(\vec{e}_\alpha \partial_\alpha + \frac{1}{\sin \theta} \vec{e}_\theta \partial_\theta + \frac{1}{\sin \alpha \sin \theta} \vec{e}_\varphi \partial_\varphi - \tan \frac{\alpha}{2} \vec{e}_\alpha \right) \cdot \vec{\tau} \end{split}$$

commutes with chiral rotations

$$\vec{J}_L = \frac{1}{2} \left(\vec{J} - \vec{K} \right), \quad \vec{J}_R = \frac{1}{2} \left(\vec{J} + \vec{K} \right), \quad C^2 = \vec{J}^2 + \vec{K}^2 + \frac{3}{4}$$

Energy spectrum

$$E_j = rac{1}{2\Theta} \left[j'(j'+2) + rac{\Lambda^2 - 1}{2}
ight] + E(ec{
ho}), \quad j' = j \pm rac{\Lambda}{2}$$

Rotor quantum numbers and degeneracies

$$j_{L} = j_{R} \pm \frac{1}{2}, \quad j = j_{L} + j_{R} \in \left\{\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots\right\}, \quad g = 2\left(j + \frac{1}{2}\right)\left(j + \frac{3}{2}\right)$$

Rotor Spectrum as a function of $\Lambda = g_A |\vec{p}|/M$

Remarkably, for $\Lambda = \pm 1$ the non-Abelian field strength vanishes and $E_j(\pm 1) = \frac{1}{2\Theta}j'(j'+2)$ with $j' = j \pm \frac{1}{2}$. The QCD rotor spectrum then looks like the one of in the vacuum sector, although the system now has baryon number one.

From Graphene to Ni_xCoO₂

Rotor Spectrum at Half-Filling

Rotor Spectrum in the Single-Hole Sector

Rotor Spectrum in the QCD Vacuum Sector

Rotor Spectrum in the Single-Nucleon Sector

Conclusions

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

Conclusions

- There are intriguing analogies between antiferromagnets and QCD.
- Fermions have characteristic effects on the rotor spectrum.
- The rotor problem tests the effective theory nonperturbatively.
- Perturbative matching of Λ to the infinite volume effective theory is necessary before g_A could be extracted from the rotor level splitting.

Interesting related work

- A. Ali-Khan et al., Nucl. Phys. B689 (2004) 175
- W. Detmold and M. Savage, Phys. Lett. B599 (2004) 32
- P. F. Bedaque, H. W. Griesshammer, and G. Rupak, Phys. Rev. D71 (2005) 054015
- G. Colangelo, A. Fuhrer, and C. Haefeli, Nucl. Phys. Proc. Suppl. 153 (2006) 41

BGR collaboration, P. Hasenfratz et al., PoS (LATTICE 2007) 077

JLQCD collaboration, H. Fukaya et al.,

PoS (LATTICE 2007) 077, Phys. Rev. D76 (2007) 054503, Phys. Rev. Lett. 98 (2007) 172001