PACS-CS Results for 2+1 Flavor Lattice QCD Simulation on and off the Physical Point

Y.Kuramashi for the PACS-CS Collaboration (Univ. of Tsukuba)

July 18, 2008

Plan of talk

- $\S1.$ The PACS-CS project
- $\S2$. Simulation details
 - Algorithms \Rightarrow Ishikawa's talk(Wed)
 - Simulation parameters
- $\S3. SU(3)$ and SU(2) ChPT analyses
 - PS sector (Low energy constants, FSE)
 - Baryon
- $\S4.$ Results of the physical point simulation
 - Comparison with the extrapolated results
- $\S5.$ Summary

$\S1$. The PACS-CS project

Parallel Array Computer System for Computational Sciences operation started on 1 July 2006 at CCS in U.Tsukuba

collaboration members
physicists:S.Aoki, N.Ishii, N.Ishizuka, D.Kadoh, K.Kanaya,
T.Kuramashi, K.Sasaki, Y.Taniguchi, A.Ukawa,
N.Ukita, T.Yoshié
K-I.Ishikawa, M.OkawaTsukuba
Hiroshima
Kanazawa

computer scientists: T.Boku, M.Sato, D.Takahashi, O.Tatebe Tsukuba T.Sakurai, H.Tadano

Physics plan

aim: 2+1 flavor QCD simulation at the physical point strategy: reduce m_{ud} keeping m_s around the physical value by-product: investigate viability of extrapolation method with ChPT

	PACS-CS	CP-PACS/JLQCD
gauge action	Iwasaki	Iwasaki
quark action	clover with c_{SW}^{NP}	clover with c_{SW}^{NP}
a[fm]	0.07,0.1,0.122	0.07,0.1,0.122
volume	$\gtrsim (3 \mathrm{fm})^3$	$\sim (2 \mathrm{fm})^3$
$m_{\rm ud}^{\rm AWI}$	physical point	64MeV
algorithm for ud	DDHMC with improvements	НМС
algorithm for s	UV-filtered exact PHMC	exact PHMC

$\S \textbf{2}.$ Simulation details

parameters

$\kappa_{\sf ud}$	κ_{S}	ud algorithm	$m_{\pi}L$	au	MD time
0.13700	0.13640	DDHMC	10.3	0.5	2500
0.13727	0.13640	DDHMC	8.4	0.5	2000
0.13754	0.13640	DDHMC	6.0	0.5	2250
0.13754	0.13660	DDHMC	5.7	0.5	2000
0.13770	0.13640	DDHMC	4.3	0.25	2000
0.13770	0.13660	MP2DDHMC	—	0.25	—
0.13781	0.13640	MPDDHMC	2.3	0.25	990

 $m_{\rm PS} = 156 {\rm MeV} \ (m_{\rm ud}^{\rm AWI} = 3 {\rm MeV})$ is reached $\kappa_{\rm ud} \ge 0.13754$ for ChPT fits

6

unitary points with $m_{\pi} \lesssim 400 \text{MeV}$

Further improvements on DDHMC for $m_{\pi} \lesssim 200 \text{MeV}$ \Rightarrow Ishikawa's talk(Wed)

• Mass-preconditioned DDHMC(MPDDHMC,MP2DDHMC)

 $\kappa'_{\rm ud} = \rho \kappa_{\rm ud}$ for the preconditioner of IR part

$$\det R = \det R' \cdot \det \left(rac{R}{R'}
ight)$$

tame the fluctuation of $||F_{IR}||$

- Chronological inverter for IR part strict tolerance: $|Dx b|/|b| < 10^{-14}$ both for force and H
- solver improvement

incorporate deflation technique

$\S3. SU(3)$ and SU(2) ChPT analyses

$$\frac{\text{NLO SU(3) ChPT formula}}{m_{\pi}^{2} = 2m_{\text{ud}}B_{0}\left\{1 + \mu_{\pi} - \frac{1}{3}\mu_{\eta} + 2m_{\text{ud}}K_{3} + K_{4}\right\}}$$

$$m_{K}^{2} = (m_{\text{ud}} + m_{\text{s}})B_{0}\left\{1 + \frac{2}{3}\mu_{\eta} + (m_{\text{ud}} + m_{\text{s}})K_{3} + K_{4}\right\}$$

$$f_{\pi} = f_{0}\left\{1 - 2\mu_{\pi} - \mu_{K} + 2m_{\text{ud}}K_{6} + K_{7}\right\}$$

$$f_{K} = f_{0}\left\{1 - \frac{3}{4}\mu_{\pi} - \frac{3}{2}\mu_{K} - \frac{3}{4}\mu_{\eta} + (m_{\text{ud}} + m_{\text{s}})K_{6} + K_{7}\right\}$$

$$\mu_{P} = \frac{1}{16\pi^{2}}\frac{m_{P}^{2}}{f_{0}^{2}}\ln\left(\frac{m_{P}^{2}}{\mu^{2}}\right)$$

unknown parameters: $B_0, f_0, K_{3,4,6,7}(L_{4,5,6,8})$ should use the formula of WChPT? NLO WChPT formula in terms of m_q^{AWI} Aoki-Bär-Takeda-Ishikawa

$$m_{\pi}^{2} = 2m_{\rm ud}B_{0}\left\{1 + \mu_{\pi} - \frac{1}{3}\mu_{\eta} + 2m_{\rm ud}K_{3} + K_{4} - \frac{2H''}{f_{0}^{2}}\right\}$$

$$m_{K}^{2} = (m_{\rm ud} + m_{s})B_{0}\left\{1 + \frac{2}{3}\mu_{\eta} + (m_{\rm ud} + m_{s})K_{3} + K_{4} - \frac{2H''}{f_{0}^{2}}\right\}$$

$$f_{\pi} = f_{0}\left\{1 - 2\mu_{\pi} - \mu_{K} + 2m_{\rm ud}K_{6} + K_{7} - \frac{2H'}{f_{0}^{2}}\right\}$$

$$f_{K} = f_{0}\left\{1 - \frac{3}{4}\mu_{\pi} - \frac{3}{2}\mu_{K} - \frac{3}{4}\mu_{\eta} + (m_{\rm ud} + m_{s})K_{6} + K_{7} - \frac{2H'}{f_{0}^{2}}\right\}$$

NLO WChPT formula in terms of m_q^{AWI} Aoki-Bär-Takeda-Ishikawa

$$m_{\pi}^{2} = 2m_{ud}B_{0}\left\{1 + \mu_{\pi} - \frac{1}{3}\mu_{\eta} + 2m_{ud}K_{3} + K_{4} - \frac{2H''}{f_{0}^{2}}\right\}$$

$$m_{K}^{2} = (m_{ud} + m_{s})B_{0}\left\{1 + \frac{2}{3}\mu_{\eta} + (m_{ud} + m_{s})K_{3} + K_{4} - \frac{2H''}{f_{0}^{2}}\right\}$$

$$f_{\pi} = f_{0}\left\{1 - 2\mu_{\pi} - \mu_{K} + 2m_{ud}K_{6} + K_{7} - \frac{2H'}{f_{0}^{2}}\right\}$$

$$f_{K} = f_{0}\left\{1 - \frac{3}{4}\mu_{\pi} - \frac{3}{2}\mu_{K} - \frac{3}{4}\mu_{\eta} + (m_{ud} + m_{s})K_{6} + K_{7} - \frac{2H'}{f_{0}^{2}}\right\}$$

redefinition:
$$B'_0 = B_0 \left\{ 1 - \frac{2H''}{f_0^2} \right\}, \quad f'_0 = f_0 \left\{ 1 - \frac{2H'}{f_0^2} \right\}$$

 $O(a^2)$ terms can be absorbed in B'_0 and f'_0

10-a

expected chiral behavior

parameters are determined by experimental inputs

Amorós-Bijnens-Talavera, 01

curvature due to logarithmic function ⇒ good test ground for light quark mass simulations

chiral behavior

curvature is clearly observed \Rightarrow try SU(3) ChPT fit

simultaneous fit for $m_{\pi}^2/m_{\rm ud}^{\rm AVVI}$, $m_K^2/(m_{\rm ud}^{\rm AVVI} + m_{\rm S}^{\rm AVVI})$, f_{π} , f_K

	PACS-CS	phenom*	RBC/UKQCD08	MILC07
$f_0[\text{GeV}]$	0.1160(88)	0.115	0.0935(73)	
f_{π}/f_0	1.159(57)	1.139	1.33(7)	$1.21(5)(^{+13}_{-3})$
<i>L</i> 4	-0.04(10)	0.00(80)	0.139(80)	$0.1(3)(^{+3}_{-1})$
L_5	1.43(7)	1.46(10)	0.872(99)	$1.4(2)(^{+2}_{-1})$
$(2L_6 - L_4)$	0.10(2)	0.0(1.0)	-0.001(42)	$0.3(1)(^{+2}_{-3})$
$(2L_8 - L_5)$	-0.21(3)	0.54(43)	0.243(45)	0.3(1)(1)
χ^2/dof	4.2(2.7)		0.7	

 L_i are defined at $\mu=m_\rho$ in units of 10^{-3} * taken from Colangelo-Dürr-Haefeli, hep-lat/0503014

consistent with other groups?

conversion to \overline{l}_3 and \overline{l}_4 in SU(2) ChPT

Gasser-Leutwyler, 84

$$m_{\pi}^{2} = 2m_{\rm ud}B \left\{ 1 + \frac{2m_{\rm ud}B}{16\pi^{2}f^{2}}\bar{l}_{3} \right\}$$
$$f_{\pi} = f \left\{ 1 - \frac{2m_{\rm ud}B}{8\pi^{2}f^{2}}\bar{l}_{4} \right\}$$

 $\{B_0, f_0, L_{4,5,6,8}\}$ are converted to $\{B, f, \overline{l}_{3,4}\}$ Gasser-Leutwyler, 85

$\overline{\it l}_3$ and $\overline{\it l}_4$ in comparison with other groups

MILC result for \overline{l}_3 is exceptionally small

what is responsible for $\chi^2/dof=4.2(2.7)$?

 $m_{\rm S}^{\rm AWI}$ dependence is not well reproduced

what about NLO/LO ratio?

NLO/LO ratio is $40 \sim 50\%$ \Rightarrow NNLO contributions would be considerable

alternative choice

Roessl, 99

NLO SU(2) ChPT + analytical expansion around the physical m_s

$$m_{\pi}^{2} = 2m_{ud}B\left\{1 + \frac{2m_{ud}B}{16\pi^{2}f^{2}}\bar{l}_{3}\right\}$$

$$f_{\pi} = f\left\{1 - \frac{2m_{ud}B}{8\pi^{2}f^{2}}\bar{l}_{4}\right\}$$

$$m_{K}^{2} = \alpha + \beta \cdot m_{ud} + \gamma \cdot m_{s}$$

$$f_{K} = (\bar{f}_{s}^{(0)} + m_{s}\bar{f}_{s}^{(1)})\left\{1 + \beta' \cdot m_{ud} - \frac{3}{4}\left(\frac{2m_{ud}B}{16\pi^{2}f^{2}}\right)\ln\left(\frac{2m_{ud}B}{\mu^{2}}\right)\right\}$$

18

fit results

simultaneous fit to m_π , f_π , f_K

3 choices of fit ranges

		PACS-CS		phenom
	Range I	Range II	Range III	
f[GeV]	0.1248(51)	0.1181(30)	0.1158(28)	0.1219(7)
f_{π}/f	1.063(8)	1.074(5)	1.078(5)	1.072(7)
\overline{l}_3	3.23(21)	3.32(10)	3.31(10)	2.9(2.4)
\overline{l}_4	4.10(20)	4.32(9)	4.36(9)	4.4(2)
χ^2/dof	0.33(68)	2.0(1.0)	2.8(1.8)	

results are stable against choice of fit range χ^2 /dof is increased by inclusion of heavier pion

fit ranges

$\overline{\it l}_3$ and $\overline{\it l}_4$ in comparison with other groups

consistent with other groups

21

how well described by NLO SU(2) ChPT?

 $m_{\rm S}^{\rm AWI}$ dependence is well reproduced

convergence

NLO/LO ratio is $\lesssim 20\%$ in the fit range $m_{\rm ud}^{\rm AWI} \lesssim 0.01$ NNLO contributions could be 5%

FSE based on NLO SU(2) ChPT

 $\frac{R_X = (X(L) - X(\infty))/X(\infty) \text{ for } X = m_\pi, f_\pi}{\text{Colangelo-Dür-Haefeli, 04}}$

-

$$R_{m\pi} = \frac{1}{4} \xi_{\pi} \tilde{g}_{1}(m_{\pi}L),$$

$$R_{f\pi} = -\xi_{\pi} \tilde{g}_{1}(m_{\pi}L)$$

$$\xi_{\pi} \equiv \frac{m_{\pi}^{2}}{(4\pi f_{\pi})^{2}}, \quad \tilde{g}_{1}(x) = \sum_{n=1}^{\infty} \frac{4m(n)}{\sqrt{n}x} K_{1}(\sqrt{n}x)$$

valid for $m_{\pi}L > 2$ expected by the authors

24

 $R_{m_{\rm PS}} > 0 \mbox{ and } R_{f_{\rm PS}} < 0 \mbox{ at most a few % even at the physical point }$

ChPT for nucleon

NNLO SU(2) formula

$$m_{N} = m_{0} - 4c_{1}m_{\pi}^{2} - \frac{3g_{A}^{2}}{16\pi f^{2}}m_{\pi}^{3} + \left[e_{1}(\mu) - \frac{3}{32\pi^{2}f^{2}}\left(\frac{g_{A}^{2}}{m_{0}} - \frac{c_{2}}{2}\right) - \frac{3}{16\pi^{2}f^{2}}\left(\frac{g_{A}^{2}}{m_{0}} - 8c_{1} + c_{2} + 4c_{3}\right)\ln\left(\frac{m_{\pi}}{\mu}\right)\right]m_{\pi}^{4} + \frac{3g_{A}^{2}}{128\pi f^{2}m_{0}^{2}}m_{\pi}^{5} + O(m_{\pi}^{6})$$

fit procedures

- g_A , c_2 , c_3 given, m_0 , $c_1 e_1(\mu)$ to be determined by fit
- apply to $\kappa_s = 0.13640$ series

drastic cancellations between different orders strange contributions in SU(3) ChPT are significant Are we satisfied at NLO SU(2) ChPT on the physical m_s ?

Are we satisfied at NLO SU(2) ChPT on the physical m_s ?

absolutely NO

Are we satisfied at NLO SU(2) ChPT on the physical m_s ?

absolutely NO

<u>reasons</u>

- inappropriate for precision measurement
 NNLO contributions could be 5%
- discouraging convergence behaviors for baryons

direct simulation on the physical point is inevitable to control the systematic error

$\S4$. Results of the physical point simulation

practical feasibility

physical point is within our reach

slightly off the physical point at the present statistics interesting to compare the results with the extrapolated values

decay constants

extrapolation ambiguity doesn't matter at the level of 5% error

vector meson masses

refined with smaller error bars

$\boldsymbol{\Omega}$ baryon as physical input

more precise scale determination at the level of < 1%

\S 4. Summary

what we learn

- large NLO contributions in SU(3) ChPT due to m_s
- NLO SU(2) ChPT is not enough for precision measurement
- necessary to simulate the physical point directly

next step

- increasing the statistics on $32^3 \times 64$ at the physical point
- T2K-Tsukuba (95TF peak) started operation in U.Tsukuba on 2 June
- check FSE \Rightarrow 64⁴ lattice at the physical point
- extension to another lattice spacings