

Meson Decays with Crystal Ball at MAMI

Christoph Florian Redmer Institute for Nuclear Physics University Mainz 5th August 2012

Institute for Nuclear Physics in Mainz

Christoph Florian Redmer

Experiments at MAMI

Christoph Florian Redmer

Glasgow Tagging Spectrometer

End-Point Tagger

- Covers ~1440 < $E_v[MeV]$ < ~1590 Mev
- Essential for tagged η' production
- Successfully commissioned in March 2010

Christoph Florian Redmer

<u>Crystal Ball:</u> 672 NaI(Tl) crystals 93,3% of total solid angle Each crystal equipped with PMT

$$\frac{\sigma}{E_{\gamma}} = \frac{2\%}{(E_{\gamma}/GeV)^{0.25}}$$

$$\Delta t = 2.5 \text{ ns FWHM}$$

$$\sigma(\theta) = 2^{\circ} \dots 3^{\circ}$$

$$\sigma(\phi) = \frac{2^{\circ} \dots 3^{\circ}}{\sin(\theta)}$$

<u>TAPS:</u> Up to 510 BaF₂ crystals Polar acceptance: $4-20^{\circ}$ $\Delta t = 0.5 \text{ ns FWHM}$ $\frac{\sigma}{E_{\gamma}} = \frac{0.79 \%}{\sqrt{E_{\gamma}/GeV}} + 1.8 \%$

Christoph Florian Redmer

Christoph Florian Redmer

Experimental Results

Photoproduction Cross Sections

$\eta \rightarrow \pi^0 \pi^0 \pi^0$

- Isospin violating process
 - electromagnetic contributions small
 - sensitive to quark mass difference

(Sutherland's Theorem)

MILC 09 PACS-CS 08 RBC/UKQCD 08 PDG 08

Leutwyler 96 Schechter et al. 93 Donoghue, Holstel Gerard 90 Cline 89

H. Leutwyler, arXiv:0911.1416, CD2009

0.2

elson. Flemina & Kilcup 03

 $\overline{\Gamma}$: Γ calculated at Dashen limit

Good understanding of decay in ChPT is crucial
 Study Dalitz plot to test ChPT (implementation of ππ scattering)

 $rac{m_s}{m_d}$

15

2PT must

0.8

Dalitz-Plot Analysis

Parametrize Dalitz plot density:

 $\Gamma \propto |A(X,Y)|^2 = N \cdot (1 + aY + bY^2 + dX^2 + fY^3 + ...)$

Polar coordinates more convenient for 3 identical particles

$$\Gamma \propto |A(Z, \varphi)|^2 = N \cdot (1 + 2\alpha Z + \ldots)$$

Results for α

Well established experimental database
 Enough precision to look for higher order effects, e.g. cusp

C/CP-Violating Meson Decays

CP INVARIANCE

Citation: K. Nakamura et al. (Particle Data Group), JP G 37, 075021 (2010) and 2011 partial update for the 2012 edition (URL: http://pdg.lbl.gov)

TESTS OF DISCRETE SPACE-TIME SYMMETRIES

CHARGE CONJUGATION (C) INVARIANCE

$\Gamma(\pi^0 \rightarrow 3\gamma)/\Gamma_{\text{total}}$		$<3.1 \times 10^{-8}$, CL = 90%	$Re(d^W_{ au})$	${<}0.50 imes10^{-17}$ ecm, CL ${=}$ 95%
η C-nonconserving decay parameters			$Im(d_T^W)$	${<}1.1{ imes}10^{-17}$ e cm, CL $=$ 95%
$\pi^+\pi^-\pi^0$ left-right asymmetry		$(0.09^{+0.11}_{-0.12}) \times 10^{-2}$	$\eta ightarrow \pi^+\pi^-e^+e^-$ decay-plane asymmetry	$(-0.6 \pm 3.1) imes 10^{-2}$
$\pi^+\pi^-\pi^0$ sextant asymmetry		$(0.12^{+0.10}_{-0.11}) \times 10^{-2}$	$\Gamma(\eta \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$	$<1.3 \times 10^{-5}$, CL = 90%
$\pi^+\pi^-\pi^0$ quadrant asymmetry		$(-0.09 \pm 0.09) \times 10^{-2}$	$\Gamma(\eta \rightarrow 2\pi^0)/\Gamma_{\text{total}}$	$<3.5 \times 10^{-4}$, CL = 90%
$\pi^+\pi^-\gamma$ left-right asymmetry		$(0.9 \pm 0.4) \times 10^{-2}$	$\Gamma(\eta \rightarrow 4\pi^0)/\Gamma_{\text{total}}$	$< 6.9 \times 10^{-7}$, CL = 90%
$\pi^+\pi^-\gamma$ parameter β (<i>D</i> -wave)		-0.02 ± 0.07 (S = 1.3)	$\Gamma(\eta'(958) \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$	$<2.9 \times 10^{-3}$, CL = 90%
$\Gamma(n \rightarrow \pi^0 \gamma)/\Gamma_{\text{transl}}$		$<9 \times 10^{-5}$ Cl = 90%	$\Gamma(\eta'(958) \rightarrow \pi^0 \pi^0) / \Gamma_{\text{total}}$	$< 1.0 imes 10^{-3}$, CL = 90%
$\Gamma(n \rightarrow 2\pi^0 \alpha)/\Gamma$		$<5 \times 10^{-4}$ CL = 90%	$K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ rate difference/average	$(0.08 \pm 0.12)\%$
$\Gamma(n \rightarrow 3\pi^0 \gamma)/\Gamma$		$<6 \times 10^{-5}$ CL = 90%	$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ rate difference/average	$(0.0 \pm 0.6)\%$
$\Gamma(n \rightarrow 3\infty)/\Gamma$		$<1.6 \times 10^{-5}$ CL $= 0.0\%$	$K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma$ rate difference/average	$(0.9 \pm 3.3)\%$
$\Gamma(n \rightarrow -9)^{+} total$	[4]	$<1.0 \times 10^{-5}$ CL = 90%	$\kappa^{+} \rightarrow \pi^{+}\pi^{+}\pi^{-}(g_{+} - g_{-})/(g_{+} + g_{-})$	$(-1.5+-2.2) \times 10^{-4}$
$\Gamma(\eta \rightarrow \eta^{-}e^{+}e^{-})/\Gamma$	[4]	$<4 \times 10^{-6}$, CL = 90%	$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0} (g_{+} - g_{-}) / (g_{+} + g_{-})$	$(1.8+-1.8) \times 10^{-4}$
$\Gamma(\eta \rightarrow \pi^{\circ} \mu^{\circ} \mu^{\circ})/\Gamma$ total	[a]	$<5 \times 10^{-4}$ CL = 90%		
$\Gamma(\omega(782) \rightarrow \eta \pi^{\circ})/\Gamma_{\text{total}}$		$<2.1 \times 10^{-1}$, CL = 90%		
$\Gamma(\omega(782) \rightarrow 2\pi^{\circ})/\Gamma_{\text{total}}$		$<2.1 \times 10^{-4}, CL = 90\%$		
$\Gamma(\omega(782) \rightarrow 3\pi^{\circ})/\Gamma_{\text{total}}$		$<2.3 \times 10^{-4}, \text{ CL} = 90\%$		
asymmetry parameter for $\eta'(958) \rightarrow \pi^+\pi^-\gamma$ decay		-0.03 ± 0.04		
$\Gamma(\eta'(958) \rightarrow \pi^0 e^+ e^-) / \Gamma_{\text{total}}$	[a]	$<1.4 \times 10^{-3}$, CL = 90%	Only weak un	nor limits
$\Gamma(\eta'(958) \rightarrow \eta e^+ e^-) / \Gamma_{\text{total}}$	[a]	$<2.4 \times 10^{-3}, CL = 90\%$	Only weak up	per minus
$\Gamma(\eta'(958) \rightarrow 3\gamma)/\Gamma_{\text{total}}$		$<1.0 \times 10^{-4}, CL = 90\%$	<i>Improve upper limits</i>	s by factor >10
$\Gamma(\eta'(958) \rightarrow \mu^+ \mu^- \pi^0) / \Gamma_{\text{total}}$	[a]	$<6.0 \times 10^{-5}$, CL = 90%		
$\Gamma(\eta'(958) \rightarrow \mu^+ \mu^- \eta) / \Gamma_{\text{total}}$	[a]	$<1.5 \times 10^{-5}, CL = 90\%$		
$\Gamma(J/\psi(1S) \rightarrow \gamma\gamma)/\Gamma_{total}$		$<5 \times 10^{-6}$, CL = 90%		

C-Violation in ω Decays

A. Starostin et al., Phys. Rev. C 79, 065201 (2009).

CB at MAMI results are dominating!

Transition Form Factors

 Dalitz decays of light mesons allow to determine the transition form factor in the time-like region
 study el.-mag. structure of the decaying neutral meson

$$\frac{d\Gamma_{e^+e^+\gamma}}{dq^2} = \left[\frac{d\Gamma_{e^+e^+\gamma}}{dq^2}\right]_{QED} \cdot |F(q^2)|^2$$
$$F(q^2) \approx 1 + \frac{q^2}{\Lambda^2} = 1 + bq^2$$

- Important input to calculations of the hadronic light-by-light scattering
 - Important contribution to (g-2)_µ
 - One of the largest uncertainties

TFF in $\eta \to e^+ e^- \gamma$

H. Berghäuser et al., Phys. Rev. B 701 (2011) 562-567.

New Collaborative Research Center

The Low Energy Frontier of the Standard Model: From Quarks and Gluons To Hadrons and Nuclei

12 years physics program

- The impact of hadron physics for precision tests of the Standard Model
- Timelike and spacelike observables of hadron structure
- Structure and dynamics of light mesons
- Nuclear few-body systems and baryon-baryon interactions
- 4 years DFG funding guaranteed with extension up to 12 years

Complementary aspects at

MAMI

BES-III/BEPC-II e+e- collider at √s = 2 4.5 GeV:

- Electromagnetic decays of light mesons
 - Production aims for the next 4 years
 - 5·10⁸ η
 - $= 2 \cdot 10^8 \omega$
 - 5·10⁷ η'
- Time-like transition form factors
 - $\eta \rightarrow e^+e^-\gamma$ 30000 events expected
 - $\eta' \rightarrow e^+e^-\gamma$ 200-300 events expected
 - $\omega \rightarrow \pi^0 e^+ e^-$ 250-500 events expected
- Goals for 2nd and 3rd funding period
 - TPC for improved tracking and PID
 - Detailed studies of
 - η' → e⁺e⁻γ
 - η' → e⁺e⁻ω
 - $-\eta' \rightarrow e^+e^-\rho$

- Electromagnetic decays of light mesons
 - Production aims for the next 4 years
 - 5·10⁸ η
 - $= 2 \cdot 10^8 \omega$
 - 5 · 10⁷ ŋ'
- Time-like transition form factors
 - $\eta \rightarrow e^+e^-\gamma$ 30000 events expected
 - $\eta' \rightarrow e^+ e^- \gamma$ 200-300 events expected
 - $\omega \rightarrow \pi^0 e^+ e^-$ 250-500 events expected
- Goals for 2nd and 3rd funding period
 - TPC for improved tracking and PID
 - Detailed studies of
 - $\eta' \rightarrow e^+ e^- \gamma$
 - $-\eta' \rightarrow e^+e^-\omega$
 - $-\eta' \rightarrow e^+e^-\rho$

Events $\eta' \rightarrow e^{-}e^{-}\gamma$ Simulation Counts: 231 Theorie 10 0.7 0.2 0.3 0.4 0.5 0.6 0.8 0.9 q^2 / GeV^2

Simulation based on

- PDG upper limit for branching ratio
- Estimated η' production rate at MAMI-C (6 weeks, total 18 million η)
- Efficiency from $\eta \rightarrow e^+e^-\gamma$ (~2%)
- S. Wagner, Bachelor thesis, University Mainz, 2011 M. Unverzagt, A. Denig

- Electromagnetic decays of light mesons
 - Production aims for the next 4 years
 - 5·10⁸ η
 - $= 2 \cdot 10^8 \omega$
 - 5·10⁷ η'
- Time-like transition form factors
 - $\eta \rightarrow e^+e^-\gamma$ 30000 events expected
 - $\eta' \rightarrow e^+e^-\gamma$ 200-300 events expected
 - $\omega \rightarrow \pi^0 e^+ e^-$ 250-500 events expected
- Goals for 2nd and 3rd funding period
 - TPC for improved tracking and PID
 - Detailed studies of
 - η' → e⁺e⁻γ
 - η' → e⁺e⁻ω
 - $-\eta' \rightarrow e^+e^-\rho$

First study did not yield conclusive result more statistics from 2009 available

H. Berghäuser, PhD thesis, University Gießen, 2010. A2-Collaboration

Improve by factor 2 - 5

- Meson decays with unprecedented accuracy
 - Production aims for the next 4 years
 - 5·10⁸ η
 - $\sim 2 \cdot 10^8 \omega$
 - 5·10⁷ η'
- Branching Ratios
 - BR($\omega \rightarrow \eta \gamma / \omega \rightarrow \pi^0 \gamma$) = 0.0098 ± 0.0024
 - $\blacksquare BR(\eta' \rightarrow \omega \gamma/\eta' \rightarrow \eta \pi^0 \pi^0) = 0.147 \pm 0.016$
- Decay dynamics / Tests of ChPT
 - η/η' → π⁰π⁰π⁰
 η' → ηπ⁰π⁰
 400000 events expected
- Goals for 2nd and 3rd funding period
 - TPC, new trigger concepts and forward trigger detector
 - Detailed studies of charged decay modes

Measurement of absolute branching ratios

Summary

- Crystal Ball at MAMI is ideal for high rate η, η' and ω experiments
 leading role in neutral decays of η, η' and ω
 - Decay Dynamics
 - Branching Ratios
 - Transition form factor
- New Collaborative Research Centre established at MAMI
 - 4 years of DFG funding guaranteed
 - extension up to 12 years for the full physics program
- First η' run with Crystal Ball successful in March 2012
 - End-point tagger installed and working
 - Taking data right now
- New detector developments:
 - TPC with high rate capability (prototype under construction)
 - forward trigger and tracking detectors under consideration
 improved detection of charged decays of η, η' and ω

Backup

Mainz Microtron (MAMI-B)

Acceleration via em wave (2.45GHz) cw: bunch structure ~0.4ns Injektion LINAC 3 cascaded Race-Track-Microtrons Magnet of RTM 3 ~450t per Magnet, 1.28T

HDSM (MAMI-C)

9.0 MV / turn max gain

Christoph Florian Redmer

CB PID

Particle Identificaton Detector (PID):

- Cylindrical Detector inside CB
- 24 scintillator strips
- PMT readout

TAPS PI

Christoph Florian Redmer

TPC

Existing MWPCs are not working for high rate meson decay experiments

TPC advantages:

- Improve resolution
- Higher rate capability
- Contribute to particle ID (dE/dx measurement)
- Track reconstruction

TPC in **CB**

- First test with old TPC from Karlsruhe successful
- 2011: construct prototype

η -Photoproduction

At MAMI a beam of tagged photons of excellent quality is available:

- High intensity photon beam
- Fine energy resolution
- Outstanding stability

Beam energy nearly perfect for high statistics η photoproduction

$(g-2)_{\mu}$ Theorie vs. Experiment

Standard Model: $(116\ 591\ 834\ \pm\ 49)\cdot10^{-10}$ Experiment: $(116\ 592\ 089\ \pm\ 63)\cdot10^{-10}$

Christoph Florian Redmer

Striking result:

Contributions to $(g-2)_{\mu}$

- QED contributions:
 (116584718.09±0.16)*10⁻¹¹
- Electro-Weak Contribution: (154±2)*10⁻¹¹
- Hadronic vacuum polarization: (6955±41)*10⁻¹¹
- Hadronic light-by-light:
 (105±26)*10-11

Uncertainty of the light-by-light hadronic contribution is expected to be dominant for the next generation of the g-2 measurements

Result for $\boldsymbol{\alpha}$

Christoph Florian Redmer

Effect of Cusp on α

Cusp has 5% effect on Dalitz Plot Parameter C. Ditsche, B. Kubis, Ulf-G. Meißner, Eur. Phys. J. C 60, 83 (2009).

Further effects:

- Kinematic boundaries
- Second order in amplitude expansion

Christoph Florian Redmer

Tests with $\eta \rightarrow \pi^0 \gamma \gamma$

 $L_{eff} = L_2 + L_4 + L_6 + \dots$

Tree level amplitude at $O(p^2)$ vanishes as neither π^0 nor η can emit a photon

Tree level amplitude at $O(p^4)$ vanishes as neither π^0 nor η can emit a photon, π and K loops largely supressed by G-parity violation and the large Kaon mass, respectively

First sizable contribution from O(p⁶), but coefficients must be determined using models (e.g. VMD)

Branching Ratio of $\eta \rightarrow \pi^0 \gamma \gamma$

Christoph Florian Redmer

TTF in $\pi^0 \rightarrow e^+e^-\gamma$

H. Berghäuser, PhD thesis, Gießen, 2010.

N.P. Samios et al. (BNL), Phys. Rev. 121 (1961) 275-281.

• Expected behaviour:

$$F(m^2) = \frac{1}{1 - \frac{m^2}{\Lambda^2}} \quad m_{\pi} << \Lambda \quad \Rightarrow \quad F(m^2) \approx 1$$

Christoph Florian Redmer

Christoph Florian Redmer