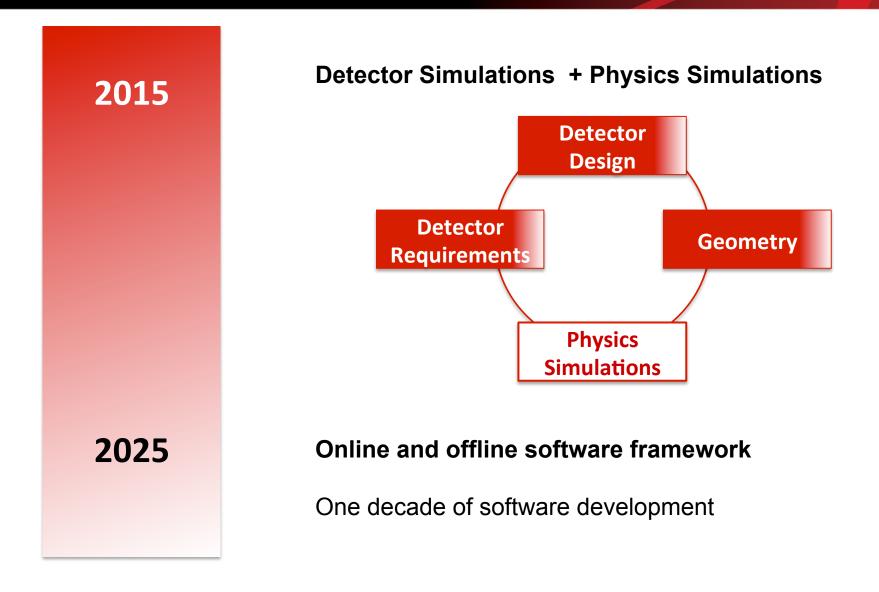
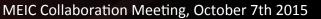


MEIC Collaboration Meeting 2015:


MEIC Detector Software and Simulation


Markus Diefenthaler

MEIC Collaboration Meeting October 5th – 7th 2015

Software R&D as part of (Detector) R&D

Office of Science

ENERGY

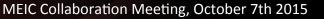
JSA

Software trends we should incorporate

Web Applications

-JSA

MEIC Collaboration Meeting, October 7th 2015



Big Data - A possible paradigm shift for NP / HEP?

- Big Data is not about size
- Big Data is about the ability to quickly analyze large amounts of data. i.e.
 - have all raw and processed data permanently stored
 - in a scaleable random access storage
 - with fast, efficient data indexing (lookup) capabilities
 - resulting in a) more efficient use of computational resources (CPU) and b) fast data (re)processing and analysis
- statistical language for R:
 - emerging as the leader in statistical languages for Big Data
 - an alternative to ROOT?
 - NP should acquire some knowledge here (cooperate with other fields / industry)
- NoSQL (non-relational) databases:
 - more flexible
 - better scaleable than traditional, relational databases
 - e.g., a graph database (e.g., used by Facebook)

R&D project:

- combine data of various SIDIS experiments
- in a graph database
- extract observables for TMDs
- exploring modern data science methods
- perhaps taking advantage of a supercomputer (exascale computing project)

EIC Software Meeting (09/24 and 09/25)

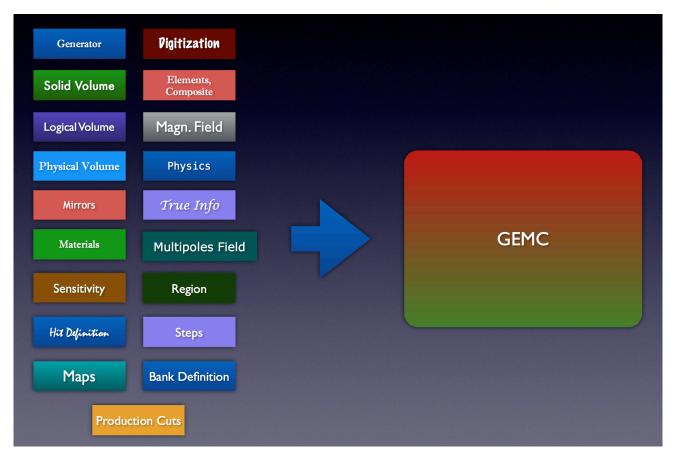
- organized by Elke-Caroline Aschenauer (BNL) and Markus Diefenthaler
- 36 participants from both BNL (mostly remotely) and Jefferson Lab

Thursday, Septem	ber 24, 2015 (F326/327)	
09:00 - 09:15	Welcome, Meeting goals	Markus Diefenthaler
09:15 - 10:45	Monte Carlo Generators - Part I	
09:15 - 10:00	Monte Carlo Generators for EIC	Elke-Caroline Aschenauer
10:00 - 10:30	mPYTHIA - Towards an Event Generator for TMD	Hrayr Matevosyan
10:30 - 10:45	Coffee Break	
10:45 - 11:59	Monte Carlo Generators - Part II	
10:45 - 11:00	Simulating spectator nucleon tagging with EIC	Christian Weiss
11:00 - 11:30	Forward Spectator Tagging Event Generator	Kijun Park
11:30 - 11:59	Hadron Elecro and Photo Production Generators Overview	Rakitha Beminiwattha
12:00 - 01:00	Lunch	
01:00 - 02:15	Monte Carlo Generators III	
01:00 - 01:45	Recent developments in Pythia 8	Stefan Prestel
01:45 - 02:15	Discussion about Monte Carlo Generators	
02:15 - 02:30	Break	
02:30 - 5:00	Software Tools	
02:30 - 03:00	EicRoot software framework	Alexander Kiselev
03:00 - 03:30	GEant4 Monte Carlo	Maurizio Ungaro
03:30 - 04:00	EicRoot for tracking R&D studies	Alexander Kiselev
04:00 - 04:15	Break	
04:00 - 05:00	Discussion on interfaces	
06:00 - 08:00	Dinner at Fin SeaFood	

Friday, September	25, 2015 (L102)	
09:00 - 10:30	Software Frameworks I	
09:00 - 09:50	Framework design experience from art	Marc Paterno
09:50 - 10:10	The JANA Design	David Lawrence
10:10 - 10:30	Software design ideas for SoLID	Ole Hansen
10:30 - 10:45	Coffee Break	
10:45 - 11:40	Software Frameworks II, Monte Carlo Generators	s IV
10:45 - 11:10	<u>Fun4all</u>	Christopher Pinkenburg
11:10 - 11:40	TMD Evolution and QCD Theory at An EIC	Ted Rogers
11:40 - 12:10	Meeting summary and common goals	
12:10 - 01:00	Lunch	

focus on detector and physics simulations:

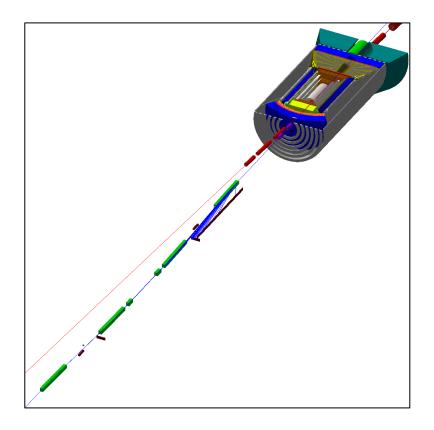
- Monte Carlo generators for the EIC physics program
- tools for detector simulations
- tracking software
- tools for detector development


goal of the EIC software meetings:

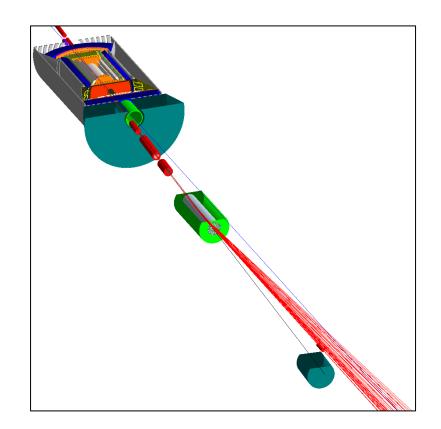
- review the software status
- identify interfaces between the BNL and JLab software
- chance for an active collaboration

Fast Monte Carlo Productions

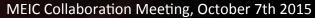
- MEIC detector and physics simulations based on GEMC
- **GEMC**: framework for the Geant4 toolkit (C++), developed by Maurizio Ungaro (Jlab)
- simulation of simple and full featured detectors (including estimated detector responses)
- fast running mode will full detector acceptance for physics simulations



JSA

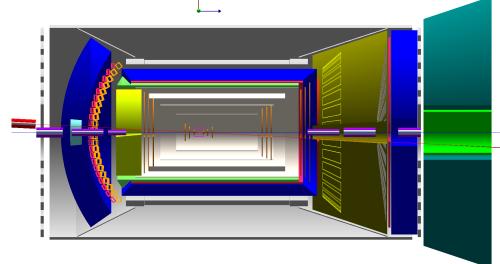

Example for GEMC simulations

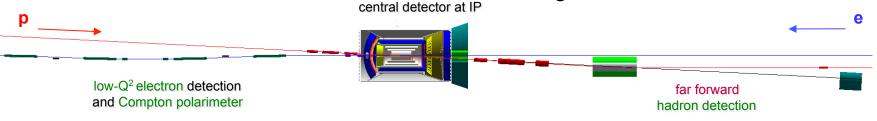
Electron Downstream View



JSA

Ion Downstream View



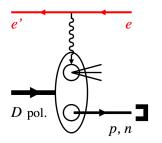

Towards a full track reconstruction

• implement full track reconstruction in the central detector:

Science

- using all subsystems
- realistic layout of support structures, cooling, and other *dead* material
- base track reconstruction on EICRoot tracking with generic track fitting (Kalman Filter)
- requires ROOT interface in GEMC
- validate the resolution of single tracks in the central detector
- study the impact of secondaries and random backgrounds
- extend reconstruction to near- and far forward regions

develop a full reconstruction code for analysis of EIC data


Spectator Tagging Simulations

slide by C. Weiss

Simulating spectator nucleon tagging with EIC

C. Weiss (JLab), EIC Software Meeting, JLab, 24–Sep–15 Jefferson Lab

• High-energy eD scattering with detection of forward proton/neutron

Identify active nucleon, control quantum state

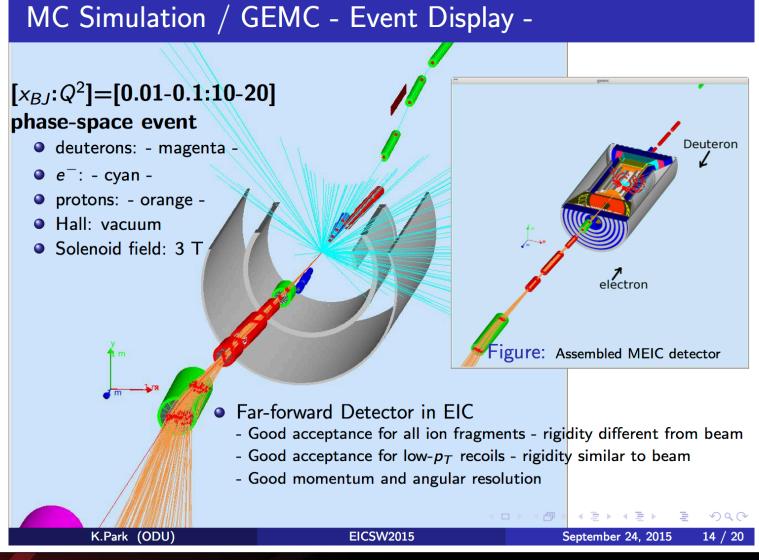
Spectator momentum \sim few 10 MeV in nucleus rest frame, boosted longitudinally in collider

Unique for collider: No target material, forward detectors, deuteron polarization longitudinal & transverse Fixed target CLAS BONUS limited to recoil momenta $>100~{\rm MeV}$

Great potential: Neutron spin structure, nuclear modification of quark/gluon structure, coherent effects at small \boldsymbol{x}

• R&D project to develop physics potential https://www.jlab.org/theory/tag/

FY14/15 LDRD Project: W.Cosyn, V.Guzey, D.Higinbotham, Ch.Hyde, K.Park, P.Nadel–Turonski, M.Sargsian, C.Weiss. Open for collaboration with users!


Develop **physics models, event generators, and analysis tools** for spectator tagging. Perform process simulations with schematic modeling of MEIC beam and detector chars. Quantify physics impact.

Spectator Tagging in GEMC

slide by K. Park

MEIC Collaboration Meeting, October 7th 2015

JSA

ENERGY

Science

Software development for the EIC

- detector and physics simulations based on GEMC framework
- R&D projects identified after **EIC Software Meeting**:
 - Monte Carlo generator for TMDs
 - take advantage of Pythia8 developments
 - work on interfaces between Jefferson Lab and BNL software:
 - ROOT API for GEMC
 - standalone track reconstruction software based on EICRoot
- R&D project for using Big Data ideas for NP / HEP, possibly facilitating supercomputing (exascale computing project)
- chance to learn from the past and implement an elegant (and thus simple) framework
- chance to contribute already now to the EIC project
- chance for an active collaboration:
 - among future experiments at Jefferson Lab
 - between Jefferson Lab and BNL
 - between Jefferson Lab and users

