Integration of Polarimetry and Low Q² Measurements

Dave Gaskell – JLab

MEIC Collaboration Meeting October 5-7 2015

1

Outline

- Chicane for low-Q² tagging and Compton polarimetry
- Measuring electron beam polarization at MEIC
- Compton polarimetry experience at JLab
- Polarimeter "baseline" design
- Future polarimeter R&D

Low Q² Tagger and Polarimetry

Low *Q*²/nearly-real photon tagging:

→ Electrons scattered at very small angles (with small energy loss) not in the acceptance of main detector

→ Use of chicane downstream of IP allows detection of these electrons

Electron polarimetry: → Unprecedented statistical precision available at MEIC implies we may become dominated by systematic uncertainties → Luminosity measurement also potentially polarization dependent → Precision electron polarimetry crucial

Chicane for Low Q² tagger and Compton Polarimeter

- At MEIC, Compton can share chicane with low Q² tagger
- Laser-electron collisions in middle of chicane assures no spin rotation relative to IP
- No interference with electron detectors needed for low Q² tagger

Chicane for Low Q² tagger and Compton Polarimeter

- → At collision with laser, electron beam has same polarization direction as at IP due to net zero bend
- → Use of spin rotators allows us to perform "spin dance" to verify longitudinal polarization at IP

Compton Polarimetry

Compton polarimetry ideal method for electron polarimetry at MEIC

- → Photon "target" very thin no impact on electron beam
- → High precision accessible sub-1% precision has been achieved

Beam polarization extracted via double-spin asymmetry:

$$A_{meas} = P_{laser} P_{beam} A_{th} = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} \overset{\text{Laser+electron}}{\overset{\text{Laser+electron}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}}}$$

Laser+electron spins anti- parallel

MEIC Beam Structure and Polarization

- Storage ring: 476.3 MHz = 2.1 ns bunch structure
- 3 A at 5 GeV and 720 mA at 10 GeV
- 2 macrobunches with one polarization; each macrobunch = $3.2 \ \mu s$

Electron Beam Time structure

bunch train & polarization pattern in the collider ring

Bunch spacing = 2.1 ns

Macrobunches with opposite polarization = $3.233 \ \mu s \log b$

1. Average polarization of beam in ring can be measured with single laser helicity 2. Polarization of each macrobunch can be determined independently by flipping laser helicity Note: revolution time = $7.17 \ \mu$ s. Flipping laser helicity may require times of order

40-50 µs, or longer

Compton Polarimetry – Experience at JLab

JLab has built two similar Compton polarimeters in Halls A and C \rightarrow Both have achieved ~1% electron beam polarization measurements

Important design considerations:

- 1. Dipole chicane allows simultaneous measurement of scattered electrons and backscattered photons
- 2. Electron-laser collision at center of chicane assures no difference in electron spin direction relative to beam before/after chicane
- 3. Continuous electron beam might require high power CW laser system due to background issues

Jefferson Lab

Precision Compton Polarimetry

- Precision goal for electron beam polarization is dP/P= 1%
- Sub-1% polarimetry has been achieved at:
 - − SLD \rightarrow 0.52% at 45.6 GeV (electron detection)
 - JLab Hall A \rightarrow 1-3 GeV (electron and photon detection)
 - JLab Hall C \rightarrow 1 GeV (electron detection)
- Sub-1% precision has only been achieved via photon detection using threshold-less, "integrating" technique
 - Large synchrotron backgrounds may make this impossible
- For now, the MEIC Compton design emphasizes detection of the Compton scattered electron

Compton Electron Detector

Hall C @ JLab: Diamond microstrips used for electron detector

Analysis employs a 2 parameter fit (polarization and Compton edge) to the differential spectrum

- \rightarrow This has yielded good results \rightarrow strip width (resolution) is important
- \rightarrow Zero-crossing must be in acceptance to constrain the fit well

Dominant systematics related to the interplay between trigger and strip efficiency Jefferson Lab

Laser and Backgrounds

- Choice of system depends on backgrounds in Compton polarimeter
- Main sources of background
 - Bremsstrahlung from residual gas in beampipe
 - Synchrotron radiation
 - Beam halo interacting with detector and/or apertures in beamline
- Two potential choices for laser system
 - Single pass, CW or pulsed laser → 10s of Watts easily achievable
 - High gain Fabry-Perot cavity

Compton Laser Options

- Single pass laser
 - Advantages: Able to rapidly flip helicity (~ 10 µs), relatively simple alignment
 - Disadvantages: Relatively low power → backgrounds may become problem, requires small crossing angle
 → interaction point stretched out – more care needed for good beam overlap
- Fabry-Perot cavity
 - Advantages: High power \rightarrow improved signal:noise
 - Disadvantages: Potential source of background (beam halo), technically complex, beam must be aligned to laser

Laser and Backgrounds

Rates and backgrounds: MEIC

Historically, Compton polarimeters have been able to suppress backgrounds by matching laser pulse structure to beam

→ Modern CW machines, there is little to be gained in this manner

Conventional CW lasers may be useable if backgrounds can be controlled

Beamline vac. = 10^{-9} , laser-beam crossing angle ~ 0.3 deg.

Laser and Backgrounds

Rates and backgrounds: MEIC

Historically, Compton polarimeters have been able to suppress backgrounds by matching laser pulse structure to beam

→ Modern CW machines, there is little to be gained in this manner

Conventional CW lasers may be useable if backgrounds can be controlled

 → FP cavity can provide significantly higher rates
→ improved
signal:background

Simulation of Rates and Backgrounds

Beam sizes from Fanglei Lin

Chicane Design (baseline)

 $\beta_x(m), \beta_y(m)$

Chicane Design: Focus at IP

 $\beta_x(m), \beta_y(m)$

Beam Halo and Backgrounds

Halls A and C use CW, Fabry-Perot cavities

 \rightarrow Both systems have mirrors ~5 mm from the beam

→ Small apertures protect mirrors from beam excursions, really bad beam properties

Yves Roblin and Arne Freyberger JLAB-TN-06-048

Same protective apertures can lead to backgrounds due to interactions with beam halo

Use of FP cavity at MEIC depends on understanding halo

Simulations - Halo

GEANT3 simulation uses description of beam halo from PEP-II design report (SLAC-R-418 p. 113)

Halo flux is about 0.25% of total beam flux

Backgrounds due to halo can contribute in 2 locations

- 1. Direct strike of electron detector
- 2. Interactions with FP cavity apertures

Laser and Backgrounds - Halo

Laser and Backgrounds - Halo

Laser and Backgrounds - Halo

Fabry-Perot Cavity Design

Electron-laser crossing angle = 2.58 degrees Mirror radius of curvature = 120 cm Laser size at cavity center (σ_x, σ_y) = 151.4 um

Cavity gains of 1000-5000 easily achievable

Projected Rates and Measurements Times

Energy	Current	1 pass laser (10 W)		FP cavity (1 kW)	
(GeV)	(A)	Rate (MHz)	Time (1%)	Rate (MHz)	Time (1%)
3 GeV	3	26.8	161 ms	310	14 ms
5 GeV	3	16.4	106 ms	188	9 ms
10 GeV	0.72	1.8	312 ms	21	27 ms

1 pass laser crossing angle = 0.3 degrees, FP cavity = 2.6 degrees Time for 1% (statistics) measurement assumes 70% polarization Rates integrated from asymmetry zero-crossing

Extremely high rates when using FP cavity means that detectors (electron and photon) will have to operate in integrating mode in that case

Electron Detector Requirements

- Segmentation → allows determination of the beam polarization with high precision by fitting the spectrum
- High rate capability
 - Scattered electron rates will be very large
 - Typical "strip" detectors have relatively slow response times after amplification → large dead time
 - Integrating mode?
- Radiation hard
 - Dose rates will be on the order of 7-25 krad/hour
 - Example: Silicon signal/noise smaller by factor of 2 after 3 MRad

Hall C Compton Electron Detector

Diamond microstrips used to detect scattered electrons \rightarrow Radiation hard: exposed to 10 MRad without significant signal degradation \rightarrow Four 21mm x 21mm planes each with 96 horizontal 200 µm wide microstrips.

 \rightarrow Rough-tracking based/coincidence trigger suppresses backgrounds

Baseline MEIC electron detector

- Diamond strip detector
 - At least 5 cm long
 - 200 strips
 - 4 planes
 - Pros
 - No damage so far up to 10 Mrad at JLab
 - Fast detector
 - Experience with Hall C
 - Cons
 - Small amplitude
- Roman pot
 - Need for RF shielding
 - Need detector shielding
 - Cooling
 - Detector motion
 - Detector far enough from beam to use roman pot (\sim 1.5 cm = 15 sigma)
 - More convenient access to detector
 - Easier placement of electronic close to detector

Compton R&D

- EIC R&D proposal recently awarded for work related to Compton electron detector (A. Camsonne et. al.)
- Initial award for detailed simulations related to:
 - Backgrounds, including halo and synchrotron
 - Effect of using electron detector in Roman pot
- In later stages, hope to build "test stand" at JLab to try out Roman pots, and also potentially different detectors
- Operation in integration mode?
- Additional R&D could be performed on the laser system
 - Investigate fast laser polarization flipping both for single-pass and Fabry-Perot cavity

Summary

- Excellent progress in design of chicane for combined Low-Q² tagger and Compton polarimeter
- Compton polarimeter design in progress, although baseline concept mature
 - Emphasis on electron detection → easiest avenue to achieve high precision
 - One-pass laser and high-gain Fabry-Perot cavity laser solutions both look feasible – choice will be dictated by need for "fast" measurements
- EIC R&D award for investigations of optimum technology for electron detector and performance in Roman Pot → initial award for detailed simulation work in FY2016

Low Q² tagger/Compton Design team

- JLab:
 - Fanglei Lin, Vasiliy Morozov, Alexandre Camsonne, Pawel Nadel-Turonski, Dave Gaskell
- SLAC:
 - Mike Sullivan
- Duke:
 - Zhiwen Zhao
- ODU:
 - Charles Hyde, Kijun Park
- U. Manitoba
 - Juliette Mammei, Josh Hoskins

Extra

Hall C Compton Electron Detector

Diamond detector read out using Custom amplifier-discriminator (QWAD)

Output pulse relatively long after amplification – time scales of order 1 µs

→ Diamond intrinsic pulse is faster – shaping electronics produces long pulse

→ Counting at high rates challenging
– operate in integration mode? (new or modified electronics)

Roman Pot

66 cm

Initial detector tests will be done with a modified version of the Hall A electron detector can

Later tests would be facilitated by adding a Roman Pot-like system

- → Allow easier access to detector (no need to break vacuum)
- → Swap detectors or change configuration rapidly

Polarization Measurement

- Compton polarimetry:
 - same polarization at laser as at IP due to zero net bend

