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Superconducting Magnet Rings for MEIC
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lon Ring— 128 arc half-cells Booster — 32 arc half-cells

Superferric magnets have been designed for the requirements of arc half-cells:
> lon Ring: 8-100 GeV protons: 0.25-- 3 T dipoles, 52 T/m quads
» Booster: 0.2-8 GeV protons: 0.24 -3 T dipoles, 6 T/m quads
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Half-cell cryostat geometry for lon Ring arcs

Dipole aperture requirement: betatron amplitude (15 o) @ injection: +3 cm
dispersion of £0.5% momentum spread: 1 cm
sagitta (with 4 m dipole length): +1.8cm

5 cm

Quad aperture radius requirement: 4 cm

Each half-cell contains two 4 m dipoles, one 0.8 m quadrupole, 1 sextupole
to correct body sextupole in dipoles (Neuffer):

11.4 m overall half-cell length

e

= |leads

(F) = fixed anchor to support post
(s) =sliding anchor to support post

= sliding shroud section of vacuum vessel
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Superferric Magnets — Cost Minimumup to~3 T

2 T pipe dipole

3 T SSCdipole 4.5 T for 100 TeV hadron collider

3 T proton gantry for
particle beam therapy

1 T strong-focusing cyclotron



MEIC Arc dipole

The biggest challenge is to create a 10 cm x 6 cm aperture with
the field quality needed for high-luminosity collisions with long
luminosity lifetime — dynamic aperture
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The fields seen by the ion beams...
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3 ' 20
I"'
/ /
deeefo 15
Y A S M R -t
A i
2 A NN O 3 R N / —
g Tl T Pl TR RS _\\— ’:{_—_.—“' ..... b4 Alo
1 g R S ,;—; - b6 ﬁ e NDTi short sample @ 4.5K
———-b8 : 5 == == Bmax in coil
Bbore
=== short sample in coil
3 short sample in bore
0 05 L 15 2° ‘25 3 35 0
Bcentral (T) 0 2 B zT) 6 8
Multipoles vs. field and load lines for MEIC dipole design.
Injection @ 8 GeV collision @ 100 GeV
0.16 — T A1x107 0.16 / . A1x107
0.14 / 0.001 014 / 0.001
0.12 . 0.0008 0.12 |, 0.0008
0. /'?\\ 0.0006 o1} 0.0006
0.08 - ./ 0.0004 4| 0.0004
0.06 - / 0002 el 0.0002
0.04 | 8 g 0.04 H O \ ! A
-0.0002 ]
0.02 o _ e 8 W 8 .
5 3 -0.0004 1) il -0.0004
i &10 O contours 0.0006 0 = z “ o -0.0006
0.02 g W e | “\_20 0 contours,
+ sagitta - D
0.04 1 - g -0.001 -0.04 } : i Sagltta -0.001
0.1 0 0.1 0.2V¥-1x107% 61 o 0.1 0.2 -1x10°3

U.S. DEPARTMENT OF Office of

ENERGY | siene A

Green is good!

MEIC Collaboration Meeting
Page 6

10/8/2015

Qefferson Lab



Cable-in-Conduit: Dubna to GSI to MEIC

" . CuNi -Tube cooled by two-phase
forced helium flow

. Superconducting strands
. NiCr-wire

. Kapton tape

. Glassfiber tape
g

=i FAR —

The SIS-100 ring uses superferric dipoles operating at 1.8 T.

Its conductor is a semi-rigid cable-in-conduit, in which the helium cryogen flows
internally so that the magnet is not immersed in liquid helium.

Cable-in-conduit makes a much simpler end geometry for a large-bore dipole. The
windings can be supported in a reinforced polymer structure, with tight precision.
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We follow the Dubna/GSI CIC strategy with a
few improvements for higher-field operation
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The cable is inserted in a sheath tube, and the sheath is drawn
. onto the cable to just compress the wires against the spring tube.
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Superferric Dipoles: H

i L

ow we build them

h 4

(Y%

Stategy:

e All cables are positioned
sandwiched between layers of
precision-machined structure.

* Ends are formed to the side of
the dipole, then popped into
place in the structure layer.

1. Fabricate inner form segments from 4”-
thick G-11 fiber-reinforced epoxy slab.

2. Assemble stack of segments for dipole
body, using the CIC channels for alignment.

« Overall coil assembly is 3. Insert the SS beam tube, seal the
preloaded within steel flux ends, and epoxy impregnate the gap
return, all windings immobilized. between segments and beam tube.
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Forming the flared ends requires production tooling

2. Bend the U to form a 90° ear, with offset
for layer-layer transitions.

1. Bend a U with the correct horizontal spacing.

‘Odd-man’ turn (& | We have validated that bends preserve internal
forming a ‘dog-bone’ end. structure, do not damage NbTi wires.
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And now for the complete fabrication

Body segments
assembled on beam tube,
jig-located, epoxy--,
impregnated

Second layer wound

Cable frame complete, <"
End covers installed«"

Flux return halves installed
and closed, SS shells welded

i channels, SS top/bottom
skins installed
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Quench Protection

Quench heater foils are bonded in a 10 cm end segment of the G-11 structure on
both ends of the dipole.

Every cable turn is driven normal in ~¥10 ms by a current pulse to the heater foils.
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We are evaluating a new quench
protection method: CLIQ

Datskov, GSI
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CIC Winding limits temperature rise
in event of heat from beam losses

Simulated temperature distribution in the presence of 1 W heat deposition in a MEIC dipole winding.

CIC Structure controls Lorentz stress to

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

33333333

.001”

X displacement (RT -3 T) 1.001"

—
" Multipole effects <0.2 units

Office of f_] A MEIC Collaboration Meeting 10/8/2015

{2 ENERGY | scionce AN Page 14 Jefferson Lab



Option 1: Single cryostat="

Supportload from 5 reentrant feet.
Supports integrate provisions for precise
positioning & internal alignment of all elements.
50 K shield, MLI, and top-half shell go on after all
alignment. Ports for checking alignments.

Static heat loads ~0.5 W to 4.5 K, 50 W to 50 K.
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Detailed views in cryosta

< 1m >

E-Cooler
lon Ring
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Booster (8 GeV, Vi = 10) Bogacz

Ring circumference: 273 m E,., = 285 MeV - 7.062 GeV
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Arc Cell - Super-ferric Magnets

For planning purposes we could provide the required fields and apertures for the Booster magnets by
building lon Ring arc dipoles and quads with appropriate lengths:

Dipole 1.2 m Quad 0.4 m

It may likely prove to be the case that making the dipoles of a common design is less expensive than
making dedicated designs with smaller quad gradient.
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Booster arc magnets

For planning purposes we could provide the required fields and apertures for the
Booster magnets by building lon Ring arc dipoles and quads with appropriate lengths:

Dipole 1.2 m Quad 0.4 m
It may likely prove to be the case that making the dipoles of a common design is less

expensive than making dedicated designs with smaller quad gradient.
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S = 750 Tesla/m? Half-cell cryomodule BPM can: 20 cm

Office of \(J A MEIC Collaboration Meeting 10/8/2015
o

U/ ENERGY |scince Jefferson Lab

Page 19



Cost estimation for a half-cell

« Both top-down and bottom-up direct cost estimation have been done
for the superferric magnet systems for the half-cells of the lon Ring
arcs. Atop-down analysis was also done for a single-shell cos 6
dipole (ala RHIC) with 10 cm bore radius.

« Top-down direct cost estimate for one 4 m dipole (with cryostat):
— Superferric: $ 71,087
— Cos 6: $135,955

» Bottom-up direct cost estimate for one complete superferric half-cell
(2 dipoles, quadrupole, sextupole, cryostat): $225,968

« Direct cost for the 128 lon Ring half-cells plus tooling, field
engineering, learning curve for production:
$30,635,421
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Where the $ goes in building dipoles

Eric Willen did a nice analysis of the as-built Vittorio Parma did the same for the
costs for RHIC dipoles built at Grumman: LHC cryostats:
Support
12% e T £ E
Cryostat & : Coils Cryostat & £ Coils Cost break-down
Assembly | 30% Assembly 29% weld and leak QA 2.4%
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Fig. 9 Labor cost distribution for the Fig. 10 Material cost distribution for the tooling and fixed costs for assembly 12% el BN
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R&D for FY2015/16

* Prepare CDR for lon Ring dipole. v

« Fabricate mock-up winding to evaluate fabrication method, precision of location of
windings in body and ends. In progress — complete 12/2015

« Design/build 1.2 m prototype of 3 T superferric dipole

— This is exactly the dipole required for the Booster arcs, and is a short model
for the 4 m dipole for the Collider arcs.

Contract negotiated after Task 2; estimate 10 mo. ARO

« Model the lattice for E-Cooler and Stacker rings that could piggy-back on the lon
Ring dipoles in the same cryostat. Simulate cooling and bunch manipulations.
Evaluate benefit in the overall scenario for acceleration, collision in MEIC.
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The Accelerator Research Lab
is enthusiastic about MEIC and we are
working hard to help make it a success
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