

MEIC Central Detector

Zhiwen Zhao for JLab MEIC Study Group

MEIC Collaboration Meeting 2015/10/07

MEIC Design Goals

Science Requirements and Conceptual Design for a

Jefferson Lab

Polarized Medium Energy

Electron-lon Collider at Jefferson Lab

Energy

Full coverage of \sqrt{s} from **15** to **65** GeV Electrons 3-10 GeV, protons 20-100 GeV, ions 12-40 GeV/u

Ion species

Polarized light ions: **p**, **d**, ³He, and possibly Li Un-polarized light to heavy ions up to A above 200 (Au, Pb)

Space for at least 2 detectors

Full acceptance is critical for the primary detector High luminosity for the second detector

Luminosity

10³³ to 10³⁴ cm⁻²s⁻¹ per IP in a broad CM energy range

Polarization

At IP: longitudinal for both beams, transverse for ions only All polarizations >70%

Upgrade to higher energies and luminosity possible 20 GeV electron, 250 GeV proton, and 100 GeV/u ion

Design goals consistent with the White Paper requirements

EIC Physics Highlights

3

- 3D structure of nucleons How do gluons and quarks bind into 3D hadrons?
- Role of orbital motion and gluon dynamics in the proton spin

Why do quarks contribute only ~30%?

 Gluons in nucleon and nuclei (light and heavy)

Does the gluon density saturate at small x?

A stage I EIC (Jlab MEIC) covers the x and Q² range between JLab 12 GeV and HERA (or a future LHeC)

Interaction Region

- Fully-integrated detector and interaction region satisfying
 - Detector requirements: full acceptance and high resolution
 - Beam dynamics requirements: consistent with non-linear dynamics requirements
 - Geometric constraints: matched collider ring footprints

Semi-Inclusive DIS (SIDIS) (one physics example)

- Highly polarized electron collide with highly polarized nuclei (proton, deuteron, ³He ,etc)
- Detect scattered electron and pion at full angle and full momentum range

MEIC IP1 Central Detector

Jefferson Lab

Tracking (Gas Electron Multiplier)

Tracking (Gas Electron Multiplier)

Find particle tracks and measure momentum
Work in high rate environment

GEM foil: 50 μm Kapton + few μm copper on both sides with 70 μm holes, 140 μm pitch

Particle Identification Detector (Hadron Blind Detector)

Particle Identification Detector (Hadron Blind Detector)

- Compact e/π PID detector
- Blind to hadron < 4GeV with CF₄ gas at PHENIX

Tom Hemmick @ StonyBrook

Particle Identification Detector (Modular RICH)

Particle Identification Detector (Modular RICH)

- Compact π/K PID detector at ele endcap
- Flexible arrangement, can be projective to IP at ele endcap

Particle Identification Detector (Dual Radiator RICH)

Jefferson Lab

Particle Identification Detector (Dual Radiator RICH)

Ion-Side RICH Detector

- π/K PID detector at ion endcap
 Aerogel with Fresnel lens ~75 cm focal length: image at focal point of mirror (also filter UV)
- CF₄ gas (visible + UV)
- 2nd mirror to place photo sensors in weaker field?

EIC R&D PID (RICH)

Particle Identification Detector (DIRC)

JA

Particle Identification Detector (DIRC)

Narrow radiator bars grouped to common prism/photosensor array

- Detection of internally reflected Cherenkov light (DIRC)
- Compact PID detector at barrel

Close-up view of focal image with spherical 3-layer lens with no air gap

Particle Identification Detector (Time of Flight)

JSA

Particle Identification Detector (Time of Flight)

Jefferson Lab

Particle Identification Detector (EMCal)

JA

Particle Identification Detector (EMCal)

SIDIS Kinematics

- Maximum hadron momentum vs hadron angle in contours of constant Q² or x_{Bi}
- Hadron momentum scales with z
- Projected π/K PID

(U)

2 decades exploration in x_B and Q^2 (E, p)

 (\mathbf{d})

W

(E, p)

Ν

High Luminosity Central Detector

Jefferson Lab

Summary

- MEIC has fully-integrated detector and interaction region design
- IP1 central detector has full acceptance and high resolution
- IP2 will feature high luminosity central detector
- Detector technology has strong support from EIC R&D effort

Backup

Unified View of Nucleon Structure

Jefferson Lab

Leading-Twist TMD PDFs

