Advanced Energy Systems: Overview & Electron Sources JLAB – March 2015

Putting Accelerator Technology to Work_

Outline

- AES Overview
- Integrated Engineering and Physics Services
- Advanced Radiation Sources
 - High-Current Electron Injectors
 - Photocathode
 - Thermionic
 - High-Current Cryomodules
 - High-Power RF Couplers and Windows
- Turnkey Accelerators and Components
 - SRF Cavity Projects
 - Turnkey Beamlines
- Contacts

TJS – MEIC 3-15 - 2 Putting Accelerator Technology to Work

Advanced Energy Systems (AES)

Mission Statement

Energy

A dvanced

AES seeks to be the supplier of choice for advanced radiation sources based on high-brightness electron accelerator technology. AES teams with market leaders in the medical imaging, homeland security, defense and other industries to provide systems for cancer and drug discovery, non-destructive evaluation and force protection. AES is committed to providing best value and AES reliability with unsurpassed after sale support.

Corporate Profile

- Privately held company incorporated in New York in September 1998 (formerly an operating group of Northrop Grumman)
- Headquartered in Medford, NY with offices in Princeton, NJ and Newport News, VA
- 24 employees
- Annual sales of \sim \$6M
- NC prototype machine shop including buffered chemical polishing (BCP) lab and e-beam welding capability
- State-of-the-art engineering and physics design and analysis capability
- ISO 9001-2008 with Design re-certified in July 2012

AES Evolution

- Formed within Grumman in 1975 to support the Tokamak Fusion Test Reactor (TFTR) project at the Princeton Plasma Physics Laboratory (PPPL)
- Strategic Defense Initiative (SDI) involvement in Accelerator Technology began in 1984 with the Beam Experiments Aboard Rockets (BEAR) project
- Relativistic Heavy Ion Collider (RHIC) superconducting magnet fabrication from 1992 to 1994
- Monochromatic X-Ray Imaging System (MXIS) & Laser Electron Accelerator Facility (LEAF) are examples of AES transition to accelerator applications
- Spun off by Northrop Grumman in September 1998
- Over \$400M in Sales between from 1975 to 1998

ACCELERATOR TECHNOLOGY

SDI⁴

FUSION

TJS – MEIC 3-15 - 4 Putting Accelerator Technology to Work

Advanced Energy Systems

Mission Statement

AES seeks to be the supplier of choice for advanced radiation sources based on high-brightness electron accelerator technology.

Product Areas

• Advanced Radiation Sources

- Free Electron Lasers (FEL)
- High-Power Microwaves (HPM)
- High-Power TeraHertz (THz) Sources
- Tunable, Monochromatic X-Ray Sources

• Turnkey Accelerator Systems & Components

- Photocathode Injectors
- Superconducting RF (SRF) Accelerators
- Normal-Conducting Accelerators
- Beam & Optical Transport Systems
- Turnkey Beamlines

• Integrated Engineering & Physics Services

TJS – MEIC 3-15 - 5 Putting Accelerator Technology to Work

AES Medford Machining and SRF Facilities

TJS – MEIC 3-15 - 6 Putting Accelerator Technology to Work

CNC Machine Shop & Forming

TJS – MEIC 3-15 - 7 Putting Accelerator Technology to Work

AES Manufacturing Capability

Medford Facility has 12,000 ft² of Manufacturing Space

Machine Tools

- HAAS VF-8/50 3 Axis CNC Mill, 64"x40"x30"
- HAAS VF-5/50 3 Axis CNC Mill, 50"x26"x26"
- Okuma 3 Axis CNC Mill, 40"x20"x20"
- HAAS SL-40 CNC Lathe, \$\$\phi40"x 44" Length of turn
- Okuma CNC Lathe, $\varphi17.7"~x~20"$ Length of turn
- HAAS TL-3 Hybrid Manual/CNC Lathe
- (2) Series 1 Bridgeport Mills 30" Travel
- Harrison Gap Bed Lathe φ16.5" x 40" Length of turn (φ24" w/ gap removed)
- Hardinge Tool Room Lathe $\phi 6$ " x 15" Length of turn

Sheet Metal – Metal Forming

- LUNA Plate Bending Roller 50" x 10 ga.
- Niagara Power Shear 10 gage x 48 in.
- Whitey Metal Tool Sheet Metal Notcher
- 20 in. Hand Roller
- LVD Power Brake ³/₄ Mild Steel x 48 in.
- Leaf Brake 16 Gage x 24 in.
- KR Wilson 50 Ton Hydraulic Press

Welding Equipment

- Hobart 400 Amp Arc Welder
- (2) Linde 300 Amp TIG Welders
- Cobramatic 300A MIG Welder
- Gas Cutting & Welding Outfit
- Cajon Orbital Arc Welder
- Argon Enclosure for Nb & Ti Welding

Vacuum Test Equipment

- Varian Model 979 Mass Spectrometer Leak Detector with 1x10⁻¹¹ Sensitivity
- Veeco Model MS-20T Mass Spectrometer Leak Detector with 1x10⁻⁹ Sensitivity
- Turbomolecular pumping station

Inspection Equipment

 Mitutoyo BRT-M507 Coordinate Measuring Machine – 20" x 28" x 16"

<u>Metrology Equipment</u>

- (3) Brunson Optical Transit Squares
- (2) Wild Precision Optical Levels
- (2) Wild T-2 Theodolites
- (2) Taylor-Hobson Line Scopes
- (2) Talyvel Electronic Levels
- (3) Alignment Lasers
- Scope Stands, Scales, Targets, etc

Chemical Treatment

- For pre-weld BCP of Nb components
- Millipore 35 lph Ultra-pure Water System w/ 350 liter storage
- Negative pressure room with 1200 CFM fume hood
- Class 10 laminar flow bench for drying and bagging

Chemistry

EB Welder and Chemistry Facilities

Light BCP Lab

- 200 sq. ft. negative pressure room filtered inlet vents (not HEPA)
- Double-wall cooled acid tank 12 kW chiller
- Millipore UHP water system provides 100 l/hr at >10M Ω , .05 mm filtered, 2500 liter storage

Systems, Inc.

Advanced

EB Welder at AES (Shown Prior to Clean Room Instl)

TJS – MEIC 3-15 - 11 Putting Accelerator Technology to Work

BNL/AES BCP and HPR Facilities at AES

TJS – MEIC 3-15 - 12 Putting Accelerator Technology to Work

Electropolishing Facility

TJS – MEIC 3-15 - 13 Putting Accelerator Technology to Work

AES Princeton RF & THz Test Facility

TJS – MEIC 3-15 - 14 Putting Accelerator Technology to Work

Outline

- AES Overview
- Integrated Engineering and Physics Services
- Advanced Radiation Sources
 - High-Current Electron Injectors
 - Photocathode
 - Thermionic
 - High-Current Cryomodules
 - High-Power RF Couplers and Windows
- Turnkey Accelerators and Components
 - SRF Cavity Projects
 - Turnkey Beamlines
- Contacts

Integrated Engineering & Physics Services

←Engineering Analysis - ANSYS Multiphysics

> TEST RF Structures Lab →

TJS – MEIC 3-15 - 16 Putting Accelerator Technology to Work

Engineering Design Process

Engineering Design Process II

TJS – MEIC 3-15 - 18Putting Accelerator Technology to Work

Systems Engineering Analysis & Modeling

Outline

- AES Overview
- Integrated Engineering and Physics Services
- Advanced Radiation Sources
 - High-Current Electron Injectors
 - Photocathode
 - Thermionic
 - High-Current Cryomodules
 - High-Power RF Couplers and Windows
- Turnkey Accelerators and Components
 - SRF Cavity Projects
 - Turnkey Beamlines
- Contacts

Electron Gun Performance & Requirements

	NCRF	DC Gun &	SRF
	Gun	SRF Booster	Gun
Frequency (MHz)	700.00	748.50	703.75
Output Energy (MeV)	2.5	7.0	2.0
Current (mA)	100	100	500
Bunch Charge (nC)	3.0	0.135	1.4
PRF (MHz)	33.3	748.5	351.9
Transverse Emittance (mm-mrad)	6.0	1.2	1.6
Longitudinal Emittance (keV-psec)	145	44	30
Momentum Spread (10 ⁻³)	5	4	5
Bunch Length (psec)	9.3	6.3	7.7

High-Current Electron Injector Options

NCRF Gun Assembly

SRF Gun Cryomodule

SRF Gun Cavity String

ce & Tech AES Superconducting Cavity at 748.5 MHz **RF** Joint Magnetic Field Nulls Double QW Choke After: V. Nguyen-Tuong, L. Phillips and J. Preble Systems, Inc. Energy Advancea 9:33:42 Putting Accelerator Technology to Work **TJS – MEIC 3-15 - 25**

TMENT OF THE

Motivation for Gridded Thermionic Gun

- Would like a thermionic electron gun for either high-performance or high-power applications where robustness, economics or footprint preclude a photocathode system.
- AES developed a CPI gridded thermionic electron gun integrated into a RF cavity for the Fritz Haber Institute as part of an IR and THz FEL
 - H. P. Bluem, D. Dowell, A. M. M. Todd, L. M. Young, "High Brightness Thermionic Electron Gun Performance," WG1010, Proceedings of ERL2011, Tsukuba, Japan.
- Budker Institute of Nuclear Physics (BINP) developed a normal conducting thermionic-cathode injector
 - "First test Results of RF Gun for the RacepTrack Microtron Recuperator of BINP SB RAS," Proc of RUPAC2012, tuppb049, St. Petersburg, Russia.
- NRL proposed a gridded thermionic electron gun for high power FELs
 - Physical Review Special Topics Accelerators and Beams 14, 020702 (2011)
 - "High Average Current Electron Gun for High Power Free Electron Lasers" Spangle, et.al.

TJS – MEIC 3-15 - 26Putting Accelerator Technology to Work

FHI IR & THz FEL

Systems, Inc. hergy red

TJS – MEIC 3-15 - 27 Putting Accelerator Technology to Work

FHI Accelerator Front End

TJS – MEIC 3-15 - 28Putting Accelerator Technology to Work

Thermionic Electron Gun Simulation and Testing

TJS – MEIC 3-15 - 29 Putting Accelerator Technology to Work

Thermionic Gun Measurements

- Pulsed 26mA beam @ 14kV rms emittance ~ 4μ
- Pulsed 100mA beam @ 20kV rms emittance ~ 8μ
- Idle current and gun HVPS limited operation
- Highest achieved voltage was 32.5kV => 214mA
 @ 100W of RF grid power (test limit)
- FHI test 45kV=>600mA @ 200W RF grid power

• Results suggest Ampere-level average currents with transverse rms emittance < 20mm-mrad should be possible

TJS – MEIC 3-15 - 30 *Putting Accelerator Technology to Work*

Normal Conducting Electron Guns

X-Band RF Gun

Systems, In

TJS – MEIC 3-15 - 31 Putting Accelerator Technology to Work

Recent AES High-Power Prototyping R&D

AES has recently prototyped key high-power FEL components with Navy support

Advanced Energy Systems Proprietary Data 32 Putting Accelerator Technology to Work

350 kW Power Coupler

Advancea

Outline

- AES Overview
- Integrated Engineering and Physics Services
- Advanced Radiation Sources
 - High-Current Electron Injectors
 - Photocathode
 - Thermionic
 - High-Current Cryomodules
 - High-Power RF Couplers and Windows
- Turnkey Accelerators and Components
 - SRF Cavity Projects
 - Turnkey Beamlines
- Contacts

TJS – MEIC 3-15 - 35 Putting Accelerator Technology to Work

AES / BNL Nb Photocathode Gun

NATIONAL LABORATORY

TJS – MEIC 3-15 - 36 Putting Accelerator Technology to Work

Turnkey Beamlines

TJS – MEIC 3-15 - 37 Putting Accelerator Technology to Work

AES Contacts

Tom Schultheiss Technical Specialist

(631) 345-6264 x 112 tom_schultheiss@mail.aesys.net http://www.aesys.net Hans Bluem Principal Investigator and Staff Scientist

(609) 514-0315 hans_bluem@mail.aesys.net http://www.aesys.net

John Rathke Co-President and Chief Engineer

(631) 790-1396 john_rathke@mail.aesys.net http://www.aesys.net Alan Todd C0-President and Chief Scientist

(631) 790-1397 alan_todd@mail.aesys.net http://www.aesys.net

