Fermilab

Compressor Ring

Valeri Lebedev

Fermilab

<u>Contents</u>

- Where do we go?
- Beam physics limitations
- Possible Compressor ring choices
- Conclusions

Muon Collider Workshop Newport News, VA Dec. 8-12, 2008

Where do we go?

- Tevatron Run II ends in two years
- FNAL future
 - Energy frontier -> Intensity frontier
- Project X ->

Neutrino factory ->

Muon collider

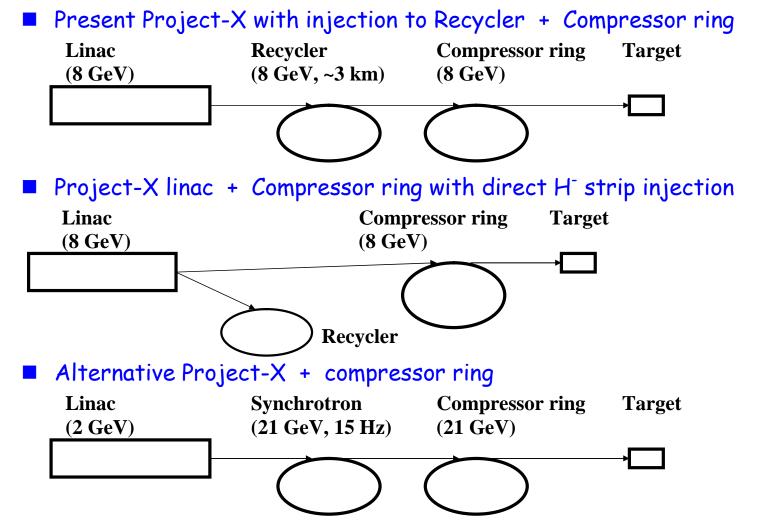
- Before we build machine
 - We have to anticipate coherent upgrade path
 - Energy choice
 - Initial infrastructure choice
 - \Rightarrow Future developments
- The most general structure for Muon collider proton source
 - Linac ->

Synchrotron (?) ->

Accumulator ring (?) ->

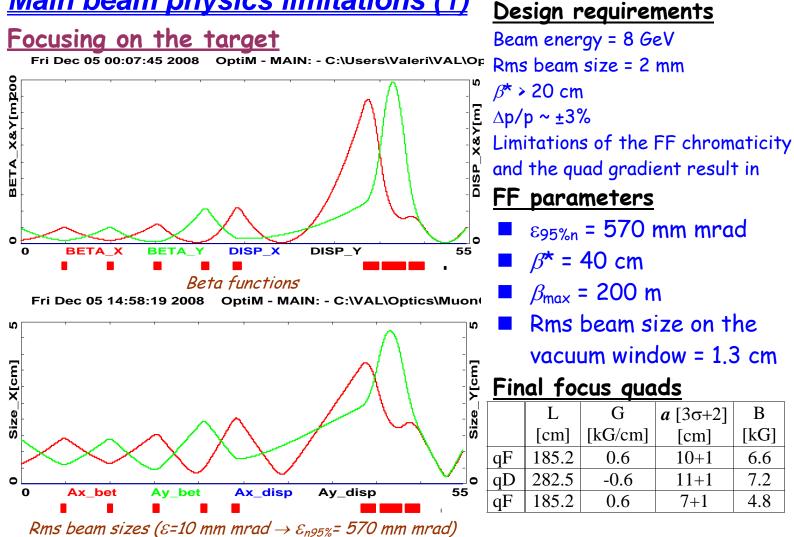
Compressor ring

Boundary conditions


Linac

- Beam current ≤ 40 mA
- ♦ Pulse length ≤ 1 ms
- Repetition rate = 15 Hz
- RMS bunch length after compressed < 60 cm</p>
- Beam is focused on the mercury target of 5 mm radius
- Rms beam size = 2 mm
- Beta-function on the target ≥ target length (~20 cm)
- Maximize beam power on the target More or about 1 MW is desirable

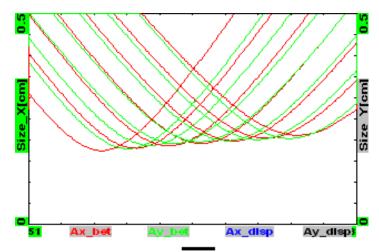
Main beam physics limitations


- Consistency of beam parameters through entire chain of the planned proton accelerators
- Beam focusing on the target
- Longitudinal beam stability
- Transverse beam stability
- Particle loss due to non-linear forces of the beam space charge

Choices to be considered

4

Main beam physics limitations (1)



Compressor ring, Valeri Lebedev, Muon Collider Workshop, Newport News, VA, Dec. 8 - 12, 2008

Focusing on the target (continue)

Other issues

- Compensation of focusing chromaticity by sextupoles is limited because of very large beam emittance
- Beam power deposition on the vacuum window
 - Further decrease => larger
 S_{target-to-window} => larger β_{max} => larger FF chromaticity

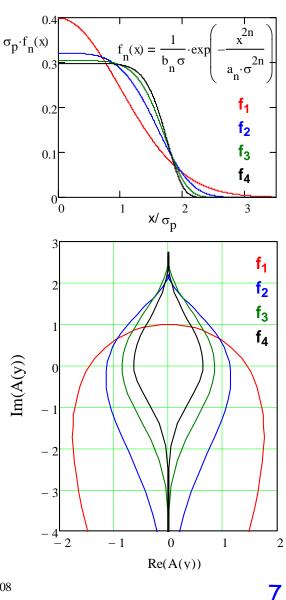
Beam envelopes in the target vicinity for $\Delta p/p = -3, -2, ..., 3\%$

- Using SC quads could reduce FF chromaticity but its usefulness is limited by desire to have large beam size on the vacuum window
 - 1 MW window looks challenging but solvable problem
 - Particle flux: dN/dt= 7.8·10¹⁴ p/s; dN/(dtdS)=7.3·10¹³ p/cm²/s
 - Beryllium, d=1 mm, R=5.2 cm (4 σ), dP/dS_{max} ~3.5 W/cm² => ΔT = 40 K° for edge cooled window
 - Radiation hardness needs to be investigated

<u>Main beam physics limitations (2)</u>

Longitudinal beam stability

For continuous beam the dispersion equation is


$$\varepsilon_{n}(\delta\omega) = 1 + \frac{eI_{0}Z_{n}}{2\pi iR_{0}p} \int_{\delta\to+0} \frac{df/dx}{\delta\omega + n\omega_{0}\eta x - i\delta} dx = 0 ,$$

$$x = \frac{\Delta p}{p} , \quad \eta = \alpha - \frac{1}{\gamma^{2}} , \quad \delta\omega = \omega - n\omega_{0}$$

Stability condition depends on particle distribution, f(x)

$$\frac{Z_n}{n} = 2\pi\beta\eta\sigma_p^2 \left(\frac{pc}{eI_0}\right) A(y)$$

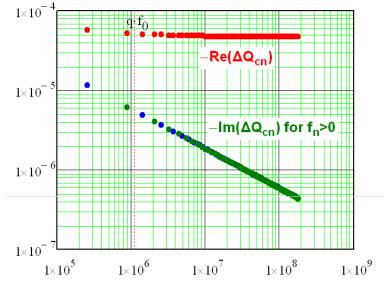
where
$$y = \frac{\delta \omega}{\omega_0 \eta n}$$
, $A(y) = \left(i\sigma_p^2 \int_{\delta \to +0} \frac{df/dx}{y + x - i\delta} dx\right)^{-1}$

There is no significant difference in stability thresholds for the cases above and below critical energy for particle distribution close to the rectangular one

Longitudinal beam stability (continue)

- Longitudinal impedance has three major contributions
 - Space charge
 - For round beam & vacuum chamber $\frac{Z(\omega_n)}{n} = i \frac{Z_0}{\beta v^2} \ln\left(\frac{a}{1.06\sigma}\right)$
 - **Resistive wall**
 - For round beam & vacuum chamber $Z(\omega_n) = (1 \text{ isign}(\omega_n))$ $Z_{0}\beta c$

$$\frac{1}{n} = (1 - i \operatorname{sign}(\omega_n)) \frac{1}{2a\sqrt{2\pi\sigma\omega_n}}$$


100 ¶⁺f₀ Space charge 10 Zn/n [Hz] 1 Resistive wal 0.1 0.01 1×10⁶ 1×10^{7} 1×10^{8} f [Hz]

F=8 GeV

- Copper chamber, $f_0 = 1.13$ MHz, a = 4.8 cm, Effect of RF cavities, vacuum chamber discontinues, etc. can be controlled by machine design and dampers (f < 100 MHz)
- Space charge contribution does not depend on frequency and dominates at high frequency
 - It result very fast momentum spread growth, $\lambda_n \approx n\omega_0 \eta (\Delta p / p)$
- For high frequencies $\lambda_n >> \omega_s$, and the continuous beam theory can be used

Main beam physics limitations (3)

Transverse beam stability Worst case estimate can be obtained for the case of the bunch with zero revolution frequency spread $\delta v_{cb} = -i \frac{r_p N}{2\pi \beta \gamma v} \frac{Z_\perp}{Z_0}$ - continuous beam $\delta v \approx \delta v_{cb} \left(\frac{C}{L_b}\right)^{1/4}$ - constant bunch density At small frequencies impedance is dominated by wall resistivity $Z_\perp \approx Z_0 \frac{c(sign(\omega) - i)}{2\pi a^3 \sqrt{2\pi \sigma \omega}}$ - round chamber; $Z_y \approx \frac{\pi^2}{12} Z_\perp$, $Z_x \approx \frac{\pi^2}{24} Z_\perp$ - flat chamber

Flat copper chamber, f₀ = 1.13 MHz, a = 4.8 cm, v=5.73, C/L_{.b}=0.235 E=8 GeV, N=5.2·10¹³

For short machine, high wall conductivity and large chamber size the transverse instabilities should not be a problem

Compressor ring, Valeri Lebedev, Muon Collider Workshop, Newport News, VA, Dec. 8 - 12, 2008

Main beam physics limitations (4)

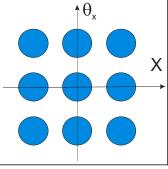
- Compressed beam has very large particle density. That results large longitudinal and transverse fields
- Both longitudinal and transverse fields drop fast with beam energy

Incoherent tune shift due to beam space charge

Betatron tune shift is equal to

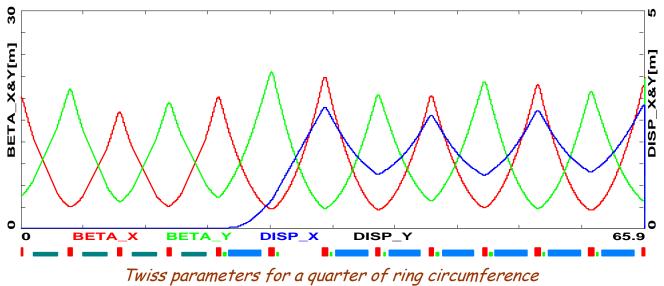
$$\delta v_{x,y} = \frac{r_p N_p}{2\pi\beta^2 \gamma^3} \frac{C}{L_b} \left\langle \frac{\beta_x}{(\sigma_x + \sigma_y)\sigma_{x,y}} \right\rangle_s, \quad \sigma_x = \sqrt{\varepsilon_x \beta_x + D^2 \left(\frac{\Delta p}{p}\right)^2}, \quad \sigma_y = \sqrt{\varepsilon_y \beta_y}$$

Dispersive contribution to the tune shift can significantly reduce δv Longitudinal field of the bunch


For Gaussian bunch

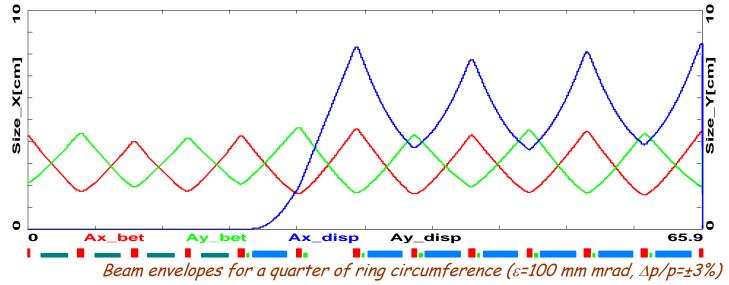
$$V_{SC}(s) = \frac{2eNC\ln(a/(1.06\sigma_{\perp}))}{\sqrt{2\pi\gamma^2}\sigma_s^2}s\exp\left(-\frac{s^2}{2\sigma_s^2}\right)$$

<u>Choice 1 – CR with Recycler beam</u>

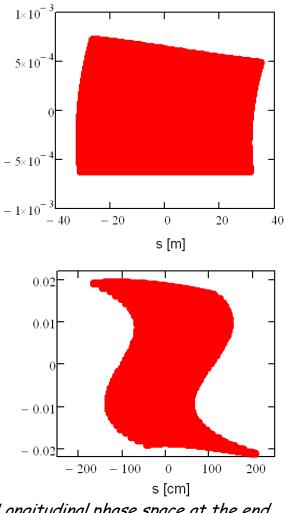

- Low longitudinal phase density of the Recycler beam is the main limitation of the beam power
 - Recycler Project-X bunch: N = $2.9 \cdot 10^{11}$, $\varepsilon_s = 0.4 \text{ eV} \cdot \text{s/bunch}$ (53 MHz RF)
- Only 8 bunches can be coalesced to fit to the required ε_L : $\sigma_s = 60 \text{ cm}, \sigma_p = 0.1\%, \varepsilon_{s95} = 6\pi \sigma_s \sigma_p p / (\beta c) \sim 3.3 \text{ eV} \cdot \text{s}$
 - => 47 kW beam power on target (15 Hz, 1 bunch)
- What's wrong with Recycler?
 - Large circumference
 - Small acceptance
 - Stainless steel vacuum chamber
- Can multiple bunches be merged in transverse phase space
 - Recycler beam emittance: ε_{n95} = 25 mm mrad
 - ♦ FF limit = 570 mm·mrad
 - On paper merging ~100 bunches is allowed (570/(2*25))²
 - But realistically only 4 bunches can be merged because the small phase space distance between bunches is required

Compressor ring, Valeri Lebedev, Muon Collider Workshop, Newport News, VA, Dec. 8-12, 2008

Choice 2 – CR with direct strip injection from Linac


- Optics design criteria
 - Small circumference (Space charge, tr. & long instabilities)
 - ♦ Large acceptance
 - Large ∆p/p => high periodicity
 - Zero dispersion in RF cavities
 - Large slip factor to avoid microwave instability
 - It requires larger RF voltage and horizontal aperture in arcs Mon Dec 08 09:41:55 2008 OptiM - MAIN: - C:\VAL\Optics\MuonCollider\Comp

Choice 2 (continue)

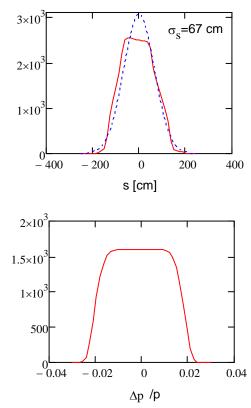

Main parameters of 8 Ge	<u>V Compressor ring</u>
Circumference	264 m
Tunes, v_x / v_y	6.42/5.42
Transition energy	3.9 GeV
Dipole field	20 kG
Acceptance	100 mm mrad
Momentum acceptance	±3%
Man Dec 00 40-05-54 0000 Ortik	

OptiM - MAIN: - C:\VAL\Optics\MuonCollider\Comp Mon Dec 08 10:05:51 2008

Compressor ring, Valeri Lebedev, Muon Collider Workshop, Newport News, VA, Dec. 8-12, 2008

<u>Choice 2 (continue)</u> Beam injection & compression		
limitation of the beam power		
Injection parameters		
Injection type	H ⁻ strip	
Linac current	40 mA	
Linac rms momentum spread	<2·10 ⁻⁴	
Linac energy sweep	±6·10 ⁻⁴	
Filling factor, L _b /C	0.235	
Total injection time	0.9 ms	
DC beam current	9.4 A	
Number of particles	5.2·10 ¹³	
Harmonic number, h	1	
RF voltage	1.5 kV	
Synchrotron tune	2.7·10 ⁻⁵	
$(Z_n/n)_{\text{Space charge}} = (Z_n/n)_{\text{Stability}}$	10 Ω	
Beam power	1 MW	

Longitudinal phase space at the end of injection and after compression


Compressor ring, Valeri Lebedev, Muon Collider Workshop, Newport News, VA, Dec. 8 - 12, 2008

Beam injection & compression (continue)

Parameters of compressed bunch

Harmonic number, h	1
RF voltage	1 MV/turn
Max. bunch long. field	~350 kV/turn
Synchrotron tune	6.8·10 ⁻⁴
Rotation time	370 turns
RF bucket height, ∆p/p	0.053
Coulomb tune shifts, $\Delta v_x / \Delta v_y$	0.07/0.105
\perp instability growth rate	2·10 ⁻⁵ /turn

There is not much leverage left to exceed 1MW beam power for 8 GeV proton driver (15 Hz, single bunch)

Projections of longitudinal particle distribution to s and p planes after compression

Compressor ring, Valeri Lebedev, Muon Collider Workshop, Newport News, VA, Dec. 8 – 12, 2008

<u>Choice 3 – CR with injection from 21 GeV RCS</u>

- 21 GeV compressor ring allows to exceed 1 MW limit of 8 GeV choice
- The help comes from
 - Smaller number of particles per bunch (8/21)
 - Reduced effect of space charge fields as $1/\gamma^2$
- However to exceed 0.3 MW power one needs to have the longitudinal phase space density higher than is presently planned for Project-X
- This choice also implies that the beam leaves longer time in the ring and high frequency RF is used for acceleration
 - High frequency RF and high beam intensity provoke electron multipactoring in the vacuum chamber and, consequently, epinstability.
 - This problem has to be addressed if RCS is preferred for Project X

Conclusions

- 8 GeV linac is a good asset for muon collider proton driver
 - It is feasible to achieve 1 MW with a single bunch mode at 15 Hz repetition rate in the specialized compressor ring
 - It looks like that other Project X infrastructure hardly can be useful for muon collider
- Further beam power increase requires larger energy
 - ♦ 21 GeV RCS looks as a good alternative
 - If chosen the problems of increased longitudinal phase space density (factor of 4) and ep-instability have to be addressed