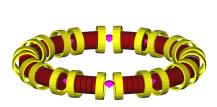
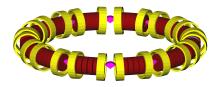
Pavel Snopok

December 10, 2008



Introduction

RFOFO ring & helix



• RFOFO ring

Introduction

RFOFO ring & helix

• RFOFO ring

RFOFO helix

Introduction

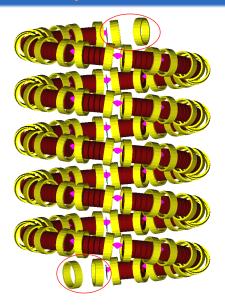
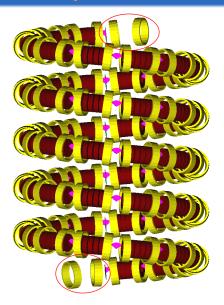
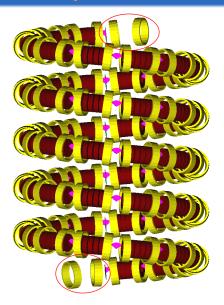

RFOFO ring & helix

Table: RFOFO and Guggenheim parameters

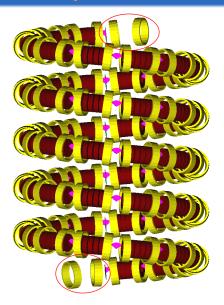
	RFOFO	Guggenheim
Circumference, [m]	33.00	33.00
Pitch, [m]	0	3.00
Pitch angle, [deg]	0	5.22
Radius, [mm]	5252.113	5230.365
Maximum axial field, [T]	2.77	2.80
Coil tilt (wrt orbit), [deg]	3.04	3.04
Average momentum, [MeV/c]	220	220
Reference momentum, [MeV/c]	201	201
RF frequency, [MHz]	201.25	201.25
RF gradient, [MV/m]	12.835	12.621
Absorber angle, [deg]	110	110
Absorber thickness on beam axis, [cm]	27.13	27.13


◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三回 ● 今へ?

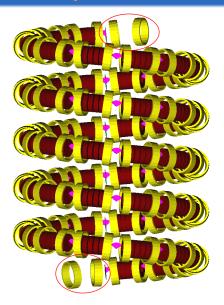
Multilayer scheme


Multilayer scheme

• 5 layers = 165 m

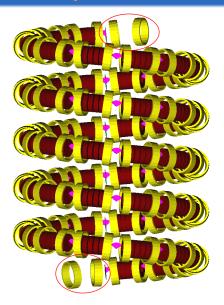

Multilayer scheme

- 5 layers = 165 m
- no shielding between layers


Multilayer scheme

- $\bullet \ 5 \ \text{layers} = 165 \ \text{m}$
- no shielding between layers
- no shielding of outer layers

(日)、


Multilayer scheme

- 5 layers = 165 m
- no shielding between layers
- no shielding of outer layers
- the magnetic field at any point of the trajectory is generated by all the coils

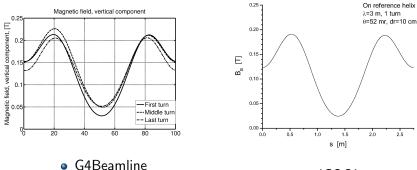
(日)

Multilayer scheme

- 5 layers = 165 m
- no shielding between layers
- no shielding of outer layers
- the magnetic field at any point of the trajectory is generated by all the coils
- compared to the case with shielding between layers

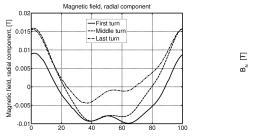
Image: A mathematical states of the state

Longitudinal component

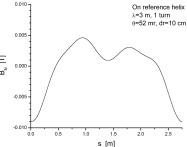

• G4Beamline

ICOOL

Vertical component

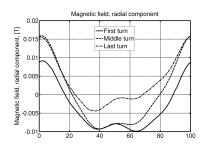


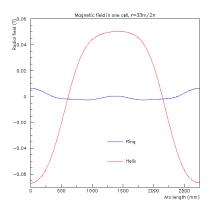
ICOOL


・ロン ・雪と ・喧と ・ 喧と

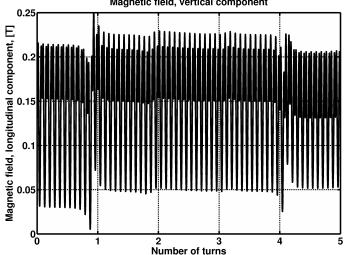
æ

Radial component


• G4Beamline

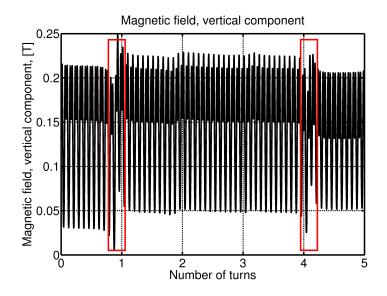

ICOOL

Source of discrepancy


• G4Beamline (Pavel Snopok)

• G4Beamline (Amit Klier)

<ロト <回ト < 注ト < 注ト


Multilayer vertical component

SIDE

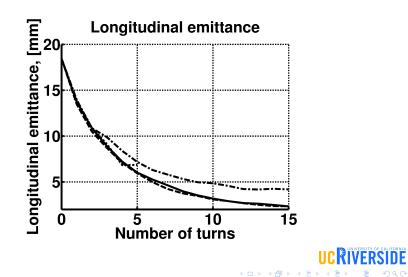
Magnetic field, vertical component

Multilayer vertical component

SIDE SIC

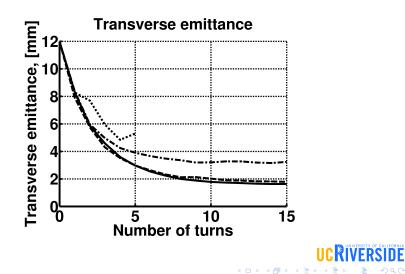
Performance characteristics

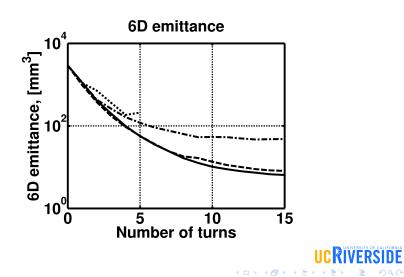
Performance characteristics compared



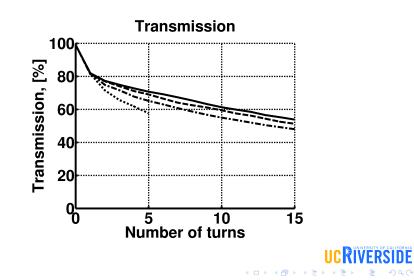
Performance characteristics compared

Four simulations are considered:

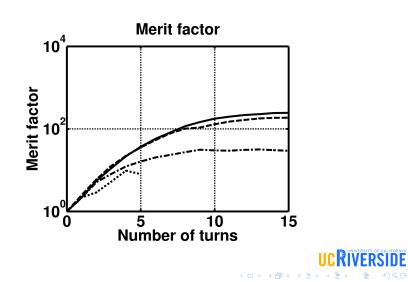

- Original RFOFO lattice
- Ideal Guggenheim (shielding between layers, single turn)
- "Realistic" Guggenheim (shielding between layers, single turn, RF cavities with windows, absorbers with windows)
- 5-layer "fair" Guggenheim (no shielding, all 5 layers contributing, all windows)


æ

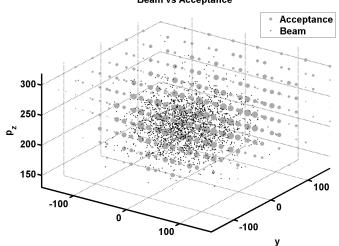
Transversal emittance



æ



Transmission


Performance characteristics

Performance characteristics

Loss in transmission

Beam vs Acceptance

		Structure			
Parameter	Turn #	RFOFO	Guggenheim	Guggenheim	Guggenheim
		ideal	ideal	realistic	5 layers
σ_{x} [mm]	0	41.79	41.79	41.79	41.79
	5	25.48	27.05	28.81	30.72
	10	19.62	20.74	25.58	-
	15	18.71	19.47	26.60	-
σ_y [mm]	0	42.86	42.86	42.86	42.86
	5	24.14	27.72	30.10	38.08
	10	18.61	21.74	27.77	-
	15	18.24	20.81	26.73	-
σ_p [MeV/c]	0	27.85	27.85	27.85	27.85
	5	11.80	12.00	13.58	12.79
	10	7.98	8.40	11.55	-
	15	7.37	7.45	10.83	-
σ_t [ns]	0	0.298	0.298	0.298	0.298
	5	0.235	0.237	0.261	0.364
	10	0.171	0.166	0.201	-
	15	0.143	0.144	0.185	-

Table: Decrease in variation for different models

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summary

Summary

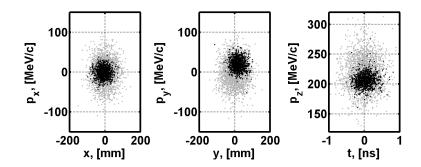


Figure: Reduction in the 6D phase space due to cooling. Gray – initial distribution, black – after 15 turns in the realistic Guggenheim cooling channel (495 m).

(日)、