Technology Development
Overview and Outlook

Kirk McDonald, for Alan Bross
MAP Collaboration Meeting
JLAB, March 4, 2011
Outline

– R&D Goals
– Status to date
 • FY 11 Milestones & beyond
– Outlook
Technology Development

What it is

• Normal Conducting RF (in cooling sections)
 – MuCool program - MuCool Test Area
• Superconducting RF (in accelerators)
• Magnets
• Targets and Absorbers
Primary Goals

- Establish the viability of the concepts and components that will be used in the design reports
 - Neutrino Factory Reference Design Report (NF-RDR)
 - Muon Collider Design Feasibility Study Report (MC-DFSR)
- Establish the engineering performance parameters to be assumed in the design studies
- Provide a good basis for cost estimates.
Tech Dev Milestones

FY11
- Complete engineering design for Be-wall rf cavity
- Complete engineering design for new 805 MHz pillbox
- Complete initial high power rf (HPRF) cavity beam test
- Initial analysis of target magnet specifications
- Fabricate and test small 400 Hz dipole model

FY12
- Fabricate and begin testing Be-wall rf cavity
- Fabricate and test new 805 MHz pillbox
- Prepare rf test cavity with atomic layer deposition (ALD) coating
- Begin fabrication of 1.5 m 400 Hz dipole model
- Detailed analysis of target magnet specifications
- Complete conceptual design of IR quadrupole

FY13
- Test 201-MHz cavity with coupling coil in MTA
- Detail design of HCC solenoid
- Complete test of 400 Hz dipole model
- Test ALD cavity

FY14
- Detailed design of target solenoid
- HTS demo coil test with quench protection

FY15
- Fabricate components for 6D cooling bench test

FY16
- Complete components for 6D cooling bench test
- Assemble components for 6D cooling bench test
- Complete detailed design of > 30-T solenoid
RF Program
Primary Goal: RF Down Selecting

• Down selection of cooling RF cavities will be based on the outcome of our experimental studies.
 – The cavities must work at an acceptable RF gradient (requirements are, of course, dependent on the position along the channel, i.e., phase rotation, bunching, initial cooling, final cooling, etc.) in a multi-Tesla magnetic field.
 – Engineering, fabrication, integration and cost of the cavity and RF power must also be considered.
 – 2 Years out if we are lucky.
Phase I RF Program

Status

• Complete first round of tests on Magnetic Insulation
 – Done
 – Second round with identical cavity, but with orientation $E \parallel B$
• Beam tests of high pressure H_2 filled cavity
 – Beam line commissioning underway
 – First Test this month
• Retest refurbished 805 pillbox
 – Done. Unfortunately, the results were very poor. Investigating!
• Materials tests: Be
 – Button cavity test
 • Waiting on post-mortem of pillbox test
 – Be-wall cavity
 • All-seasons cavity
 • Complete new design
• Atomic Layer Deposition (ALD)
 – Button test with 805 pillbox
 – Special-purpose ALD cavity
• 201 MHz tests
 – Retest 201 with repaired couplers
RF Reports at This Meeting

- A. DeMello: 10+1 cavities for MICE under fabrication (not Tech Dev).
- D. Li: 201 and 805 MHz cavities for test; Be windows look good.
- J. Norem: RF breakdown at nanoscale mitigated by coating.
- Y. Torun: MTA operational!
- A. Tollestrup: Model of arcing in high pressure RF cavity.
- K. Yonehara: Beam test soon of high pressure RF cavity.
- A. Moretti: Box cavity test: 8% reduction in usable MV/m per deg between 3-T B field and surface.
- M. Jana: Box cavity + button test: > 50% reduction in usable MV/m when 3-T is perpendicular to surface.
Outlook: RF Testing Queue

• Primary goal is to collect a lot more data with as many test vehicles as possible. Next 12-18 months:
 – 805 pillbox (modified & refurbished?)
 • Investigating
 • New series of materials & processing (Cu) tests with Buttons (pending)
 – Initial test of high power (HP) button cavity with proton beam
 – 201 MHz cavity coupler repair and re-test
 – 2nd HPRF beam test as needed
 – Rectangular box cavity with $B \parallel E$
 – 2nd rectangular box cavity with $B \perp E$
 – New pillbox is near ready (Muon’s Inc.)
 • Can operate under pressure or vacuum
 • Has capability to replace end-walls (Be)
 – Complete design of Be-wall cavity (maybe test in this time frame)
 – ALD cavity
 • Special-purpose cavity for processing in-situ with Atomic Layer Deposition
 – Test MICE production 201 MHz cavity in realistic B field [> 18 months out]
Magnet R&D - Overview

- Neutrino Factory and Muon Collider accelerator complexes require magnets with quite challenging parameters
 - Target Capture Solenoid
 - What is the most effective scheme to protect the target solenoid from the radiation environment near to the target?
 - HTS solenoid R&D to assess the parameters that are likely to be achieved
 - What is the highest practical achievable solenoid field & what is the R&D required before these solenoids can be built?
 - HCC magnet R&D to assess the feasibility of this type of cooling channel and
 - Eventually build a demonstration magnet for a HCC test section (dependent on success of HP RF tests)
 - Magnet design R&D for collider ring and IR magnets that have to deal with the expected high level of energy deposition from \(\mu \) decay electrons
 - What is the optimal design for the collider ring magnets that will enable them to operate in the presence of the decay electrons? Paper studies only (with D&S group)
 - Fast Ramping Magnets utilized in rapid-cycling synchrotron for final acceleration for the MC
Magnet Reports at This Meeting

• S. Virostek: MICE solenoid repair (not Tech Dev).
• K. Lee: Lithium lens simulations.
• R. Weggel: Conceptual design of 20-T target solenoid, and of open midplane dipoles for decay ring.
• R. Gupta: Vision of 20-T HTS solenoid.
• J. Tompkins: Two 4-coil segments of helical solenoid tested; YBCO coil tested in 14-T field.
• T. Shen: Round HTS conductor now to 600 A/mm² at 20 T and 4K.
Outlook: Magnets

• Next 12-18 months
 – HTS
 • 1st Small coil multi-element test reaches 10T
 – HCC
 • Test of 2nd R&D HCC 4-coil magnet
 • Conceptual design for HCC solenoids which meets specs
 – Accelerator
 • Conceptual designs for arc dipoles and quadrupoles
 • Conceptual design for IR quadrupole
 – RCS
 • Small prototype 400Hz dipole – fabricate and test
 • 1.5m dipole prototype – begin fabrication
 – Target Capture
 • Detailed analysis of insert and outsert solenoids; thermal, mechanical, and magnetic requirements *(maybe a bit further out than 18 months)*
• All targetry activity now under Technology Development.

 – Design
 • Target solenoid array (Weggel)
 • Magnet and shielding layout (Graves)

 – Simulation
 • Magnetohydrodynamics of mercury jet (Samulyak)
 • Mercury flow through nozzle (Ladiende, Yan)
 • Particle production and energy deposition (Back, Ding, Souchlas (+ Hansen, Prior)

 – Engineering

 – Hardware Development
Targetry Reports at This Meeting

- R. Weggel: Conceptual design of 20-T target solenoid.
- N. Souchlas: Energy Deposition in the target system.
Outlook: Targetry

• Revised baseline recently established
 – 20-T solenoid inner radius 120 cm, \Rightarrow 3 GJ
• Emphasis on design and simulation for \geq 6 months
 – Review choice of 20-T
 – Revise solenoid array accordingly
 – Initiate conceptual design of shield (+coolant flow).
 – Continue modeling of mercury jet: pipe flow, free jet flow, beam interaction.
• Engineering, costing for IDS RDR still several months away
 – Mercury flow loop, including collection pool
 – Beam windows
 – Tungsten carbide shield (+ water cooling)
 – 6-T room temperature copper magnet (+ services)
 – Superconducting solenoid array (+ cryo plant for \approx 1 kW at 4K)
 – Remote handling system, hot cells
 – Civil construction
• Hardware tests of mercury jet and/or WC+water only if indicated by above
The MAP effort in TD focuses on cooling
 – You All Know Why
The RF program continues to take a multi-pronged attack
 – The MTA is now a smoothly running facility
 • Multi-frequency RF
 • SC magnet(s) & cryogenics infrastructure
 • Extensive RF diagnostic instrumentation
 • Clean room for RF cavity work
 • H$_2$ handling infrastructure
 • p beam line
 – However, this complexity (test area is now a “primary beam enclosure”), has added significant overhead to our operations at present
 • We are working with the Fermilab safety groups to try to make operations more efficient
Summary II

• Magnet program also focuses primarily on cooling issues
 – Final cooling via very-high-field HTS solenoids
 – HCC solenoids as potential option

• But also addresses the other critical magnet issues for the MC complex
 – Ring magnets
 • Open-plane dipoles, quads, etc
 – Acceleration
 • Fast-ramping magnets
This Year

• Well, FY11 is turning out to be a real “pleasure”
• Even with the uncertainties, we think we can
 – Complete initial suite of experiments with HPRF
 – Buttons?
 – Retest 201 MHz prototype with new couplers
 – Test new cavities
 • All seasons
 • Box with E parallel to B (maybe)
 – Magnets
 • HCC/HTS/ (Check with John)
 • 400 Hz prototype (Check with Don)
END