Status of Project X

Keith Gollwitzer
Accelerator Division
Fermilab

MAP Winter Meeting - March 1, 2011
Outline

• Project X Goals
• Evolution
 – Initial Configuration
• Documentation
 – Functional Requirements
• Upgrade to Proton Driver
• Site
• Bureaucracy
 – CD Process
 – Staging
• R&D and Collaboration
Project X Goals

- Mainly based upon P5 report
 - A neutrino beam for long baseline neutrino oscillation experiments
 - Kaon- and muon-based precision experiments
 - A path toward a muon source for a possible neutrino factory and potentially a muon collider
- Recognized can also serve nuclear physics community
 - Test bed for accelerator and target studies related to:
 - Accelerator Driver Subcritical reactors
 - Accelerator Transmutation of Waste
Project X Evolution

• Initial design (8 GeV pulsed linac)
 – Did not support kaon/muon precision measurement program

• Second design
 – CW 3 GeV 1 mA H\(^{-}\) linac
 • Above kaon production threshold
 • Produces low energy pions for low energy muon experiments
 • Allows nuclear physics experiments
 • Low energy chopping allow supporting different experiment needs
 • Splitter/switchyard to simultaneously support the experiments
 – 3-8 GeV pulsed linac (accumulation in Recycler)
 • Satisfies long baseline neutrino 2 MW program
 • Additional 8 GeV beam power available for other experiments
Project X Layout

January 15, 2011
Gollwitzer - Status of Project X

[Diagram of Project X Layout]

- H- Source
- 3 GeV, 1.0 mA CW Linac
- 3-8 GeV Pulsed Linac
- Recycler / Main Injector 120 GeV
- Neutrinos 2 MW
- 0.75 MW Nuclear
- 1.5 MW Kaons
- 0.75 MW Muons
• Functional Requirement Specification
 – Outlines the parameters needed/desired

• Reference Design Report
 – Initial design to achieve the Functional Requirements
 – Initial cost range is based upon this report
3 GeV Linac Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Delivered Beam Energy, maximum</td>
<td>3 GeV (kinetic)</td>
</tr>
<tr>
<td>L2</td>
<td>Delivered Beam Power at 3 GeV</td>
<td>3 MW</td>
</tr>
<tr>
<td>L3</td>
<td>Average Beam Current (averaged over >1 μsec)</td>
<td>1 mA</td>
</tr>
<tr>
<td>L4</td>
<td>Maximum Beam Current (sustained for <1 μsec)</td>
<td>5 mA</td>
</tr>
<tr>
<td>L5</td>
<td>The 3 GeV linac must be capable of delivering correctly formatted beam to a pulsed linac, for acceleration to 8 GeV</td>
<td></td>
</tr>
<tr>
<td>L6</td>
<td>Charge delivered to pulsed linac</td>
<td>26 mA-msec in < 0.75 sec</td>
</tr>
<tr>
<td>L7</td>
<td>Maximum Bunch Intensity</td>
<td>1.9×10^8</td>
</tr>
<tr>
<td>L8</td>
<td>Minimum Bunch Spacing</td>
<td>6.2 nsec (1/162.5 MHz)</td>
</tr>
<tr>
<td>L9</td>
<td>Bunch Length</td>
<td><50 psec (full-width half max)</td>
</tr>
<tr>
<td>L10</td>
<td>Bunch Pattern</td>
<td>Programmable</td>
</tr>
<tr>
<td>L11</td>
<td>RF Duty Factor</td>
<td>100% (CW)</td>
</tr>
<tr>
<td>L12</td>
<td>RF Frequency</td>
<td>162.5 MHz and harmonics thereof</td>
</tr>
<tr>
<td>L13</td>
<td>3 GeV Beam Split</td>
<td>Three-way</td>
</tr>
</tbody>
</table>
Main Injector/Recycler Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Delivered Beam Energy, maximum</td>
<td>120 GeV</td>
</tr>
<tr>
<td>M2</td>
<td>Delivered Beam Energy, minimum</td>
<td>60 GeV</td>
</tr>
<tr>
<td>M3</td>
<td>Minimum Injection Energy</td>
<td>6 GeV</td>
</tr>
<tr>
<td>M4</td>
<td>Beam Power (60-120 GeV)</td>
<td>> 2 MW</td>
</tr>
<tr>
<td>M5</td>
<td>Beam Particles</td>
<td>Protons</td>
</tr>
<tr>
<td>M6</td>
<td>Beam Intensity</td>
<td>1.6×10^{14} protons per pulse</td>
</tr>
<tr>
<td>M7</td>
<td>Beam Pulse Length</td>
<td>~10 μsec</td>
</tr>
<tr>
<td>M8</td>
<td>Bunches per Pulse</td>
<td>~550</td>
</tr>
<tr>
<td>M9</td>
<td>Bunch Spacing</td>
<td>18.8 nsec (1/53.1 MHz)</td>
</tr>
<tr>
<td>M10</td>
<td>Bunch Length</td>
<td><2 nsec (fullwidth half max)</td>
</tr>
<tr>
<td>M11</td>
<td>Pulse Repetition Rate (120 GeV)</td>
<td>1.2 sec</td>
</tr>
<tr>
<td>M12</td>
<td>Pulse Repetition Rate (60 GeV)</td>
<td>0.75 sec</td>
</tr>
<tr>
<td>M13</td>
<td>Max Momentum Spread at extraction</td>
<td>2×10^{-3}</td>
</tr>
</tbody>
</table>
3-8 GeV Pulsed Linac Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Maximum beam Energy</td>
<td>8 GeV</td>
</tr>
<tr>
<td>P2</td>
<td>The 3-8 GeV pulsed linac must be capable of delivering correctly formatted beam for injection into the Recycler (or Main Injector).</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>Charge to fill Main Injector/cycle</td>
<td>26 mA-msec in <0.75 sec</td>
</tr>
<tr>
<td>P4</td>
<td>Maximum beam power delivered to 8 GeV</td>
<td>300 kW</td>
</tr>
<tr>
<td>P5</td>
<td>Duty Factor (initial)</td>
<td>< 4%</td>
</tr>
</tbody>
</table>
Beam Power

- Initial Pulsed Linac to deliver ~300KW
 - Duty factor of < 4%

- We want to be able to have 4MW at 8GeV
 - 1 mA average current in CW Linac would mean a duty factor of 50% for Pulsed Linac
 - Pulsed Linac duty factor of 4% would mean an average current of 12.5mA for CW Linac

- Or upgrade both Linacs
Upgradability Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>Provisions should be made to support an upgrade of the CW linac to support an average current of 5 mA.</td>
</tr>
<tr>
<td>U2</td>
<td>Provisions should be made to support an upgrade of the Main Injector to support a delivered beam power of ~4 MW at 120 GeV.</td>
</tr>
<tr>
<td>U3</td>
<td>Provisions should be made to deliver CW proton beams as low as 1 GeV.</td>
</tr>
<tr>
<td>U4</td>
<td>Provision should be made to support an upgrade to the CW linac such that it can accelerate Protons.</td>
</tr>
<tr>
<td>U5</td>
<td>Provisions should be made to support an upgrade of the pulsed linac to a duty factor of 10%.</td>
</tr>
<tr>
<td>U6</td>
<td>Provisions should be made to support an upgrade of the CW linac to 3.1 ns bunch spacing.</td>
</tr>
</tbody>
</table>

If requirements U1 and U5 are achieved, then will have 4 MW at 8 GeV.
Project X to Proton Driver

- **Proton Accumulation Ring**
 - Considerations
 - Space charge
 - H\(^{-}\) stripping

- **Bunch Compressor Ring**
 - Considerations
 - Forming 1-3 ns bunches
 - NF: keeping short bunch length for many turns before 2\(^{nd}\) and 3\(^{rd}\) bunch extractions
 - MC: one bunch or delivery of several bunches at once to target
Proton Driver Site

Transfer Line out of Accumulator is on wrong side
CD Process

- Will go through the DOE Critical Decision (CD) process for large projects (> $750M)
 - CD-0: Mission Need
 - CD-1: Alternative Selection and Cost Range
 - CD-2: Performance Baseline
 - CD-3: Start of Construction
 - CD-4: Start of Operations/Project Completion

- Timeline with CD-0 in Mar11 is to have Project X operational in 2020
Project X & DOE

• Fermilab has provided accelerator documentation to DOE required for CD-0
 – New DOE order 4.13.3b going into effect
 • Allows for staging
 – Fermilab providing more documentation
 » Phasing/staging
 » Experimental area/detector(s) are being added
 • Rare Kaon experiment is being added
 • Independent Cost Review prior to CD-0
 – DOE is figuring out what they want for this
R&D Program

• The primary elements of the R&D program include:
 – Development of a wide-band chopper
 • Capable of removing bunches in arbitrary patterns at a 162.5 MHz bunch rate
 – Development of an H- injection system
 • Require between 4.4 – 26 msec injection period, depending on pulsed linac operating scenario
 – Superconducting rf development
 • Includes six different cavity types at three different frequencies
 • Includes development of qualified industrial partners
Collaboration

- A multi-institutional collaboration has been established to execute the Project X RD&D Program.
 - Organized as a “national project with international participation”
 - Fermilab as lead laboratory
 - International participation via in-kind contributions, established through bi-lateral MOUs.
 - Collaboration MOUs for the RD&D phase outlines basic goals, and the means of organizing and executing the work. Signatories:

<table>
<thead>
<tr>
<th>ANL</th>
<th>ORNL/SNS</th>
<th>BARC/Mumbai</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNL</td>
<td>MSU</td>
<td>IUAC/Delhi</td>
</tr>
<tr>
<td>Cornell</td>
<td>TJNAF</td>
<td>RRCAT/Indore</td>
</tr>
<tr>
<td>Fermilab</td>
<td>SLAC</td>
<td>VECC/Kolkata</td>
</tr>
<tr>
<td>LBNL</td>
<td>ILC/ART</td>
<td></td>
</tr>
</tbody>
</table>
Summary

• Project X continues to move forward
• Fermilab is working with DOE to move along the CD process
• DOE is working to provide a “funding profile” for Project X
• Project X collaboration is moving forward with R&D
Neutrino Factory

Initial concept
Muon Collider

Initial concept