Preliminary results of the helicity asymmetry E for η photoproduction on the proton

Brian Morrison* and the CLAS Collaboration

Arizona State University

*Work at Arizona State University supported by the U.S. National Science Foundation
Motivation for η photoproduction experiments

- η is an isospin zero meson, which limits possible resonance couplings to N^*'s effectively working as an isospin filter.

- η is one of the lightest non-strange pseudoscalar mesons.

- Very little current data available on double polarization observables.

- Predictions for observables for incident photon energies at and above threshold are available from different theoretical approaches, for example:
 - Effective Lagrangian theories (e.g. Nakayama and Haberzettl)
 - Partial wave analysis (e.g. SAID and Bonn-Gatchina)
 - Isobar analysis (e.g. eta-MAID)
Polarization observables

<table>
<thead>
<tr>
<th>Photon</th>
<th>Target</th>
<th>Recoil</th>
<th>Target + Recoil</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x'</td>
</tr>
<tr>
<td>-</td>
<td>x</td>
<td>y</td>
<td>z'</td>
</tr>
<tr>
<td>-</td>
<td>x</td>
<td>y</td>
<td>z'</td>
</tr>
<tr>
<td>-</td>
<td>x</td>
<td>y</td>
<td>z'</td>
</tr>
</tbody>
</table>

- \(\sigma_0 \)
- \(T \)
- \(0 \)
- \(0 \)
- \(P \)
- \(0 \)
- \(T_{x'} \)
- \(-L_{x'} \)
- \(T_{z'} \)
- \(L_{z'} \)
- \(-\Sigma \)
- \(H \)
- \((-P) \)
- \(-G \)
- \(O_{x'} \)
- \((-T) \)
- \(O_{z'} \)
- \((-L_{z'}) \)
- \((T_{z'}) \)
- \((-L_{x'}) \)
- \((-T_{x'}) \)
- \(0 \)
- \(0 \)
- \(-E \)
- \(-C_{x'} \)
- \(0 \)
- \(-C_{z'} \)
- \(0 \)
- \(0 \)
- \(0 \)
- \(0 \)
- \(0 \)

Observables possible with beam-target polarization experiments

Observable of interest in this talk

Polarization observable \(E \):

\[
E = \frac{\sigma_{\frac{1}{2}} - \sigma_{\frac{3}{2}}}{\sigma_{\frac{1}{2}} + \sigma_{\frac{3}{2}}}
\]

By convention we take \(1/2 \) state minus the \(3/2 \) state
Helicity asymmetry E

Raw asymmetry equation in terms of yield (N):

$$R = \frac{N^{1/2} - N^{3/2}}{N^{1/2} + N^{3/2}}$$

Equation for the observable E accounting for polarizations:

$$x = E_{\gamma} / E_e$$

$$P_{\text{photon}} = P_{\text{electron}} \cdot \frac{4x - x^2}{4 - 4x + 3x^4}$$

$$P_o = P_{\text{target}} \cdot P_{\text{photon}}$$

$$E = \frac{1}{P_o \cdot f_{\text{(Dilution)}}} \cdot \frac{N^{1/2} - N^{3/2}}{N^{1/2} + N^{3/2}}$$
Constraints on E

• $S_{11}(1535)$ dominates η photoproduction at threshold energies ($W = 1500-1550$ MeV)
 – Since the $S_{11}(1535)$ is a spin $= \frac{1}{2}, L = 0$ resonance, the resonance can only couple to a helicity $\frac{1}{2}$ initial states.

• This dominance forces $E \approx 1$ at and near threshold for all scattering angles.

• This constraint of $E \approx 1$ provides an analysis check near threshold.

• For all energies, E must have a value of 1 at 0 and 180° due to conservation laws.
Running conditions

• The data for this analysis was collected during the g9a running period of FroST using the CLAS detector at the Thomas Jefferson National Laboratory.

• Target:
 – Longitudinal polarized target
 – Average target polarization:
 • ∼82% (+Pol) and 90% (-Pol)

• Photon beam:
 – Circularly and linearly polarized photon beam
 – 0.5 - 4.5 GeV
 – Electron beam polarization ∼85%

• Trigger:
 – At least one charged particle in CLAS

• 10.5 billion events taken
FroST (Frozen Spin Target)

The FroST target and its components:
A: Primary heat exchanger
B: 1 K heat shield
C: Holding coil
D: 20 K heat shield
E: Outer vacuum can (Rohacell extension)
F: CH2 target
G: Carbon target
H: Butanol target
J: Target insert
K: Mixing chamber
L: Microwave waveguide
M: Kapton coldseal

Butanol Composition:
$C_4H_9OH + \text{liquid He}$

Performance Specs:
Base Temp: 28 mK w/o beam, 30 mK with
Cooling Power: 800 μW @ 50 mK, 10 mW @ 100 mK, and 60 mW @ 300 mK
Polarization: +82%, -90%
1/e Relaxation Time: 2800 hours (+Pol), 1600 hours (-Pol)
Roughly 1% polarization loss per day.
Particle identification

- Particle identification used GPID.
- GPID compares measured velocity to known particles given the measured momentum.
- A cut of $|\beta_{\text{measured}} - \beta_{\text{calculated}}| \leq 0.08$ was enforced for pions.
Vertex resolution

Counts

-10 -5 0 5 10 15 20 25 30
Z position (cm)

Butanol Target
Carbon Target
CH2 Target

Butanol Composition:
$C_4H_9OH + \text{liquid He}$
Potential topologies:

\[\gamma + p \rightarrow p + X \ (\text{full CLAS acceptance}) \]

\[W = 1500 \text{ to } 1550 \text{ MeV} \]
Potential topologies:

\[\gamma + p \rightarrow p + X \text{ (no charged particles other than the proton detected)} \]

\[W = 1500 \text{ to } 1550 \text{ MeV} \]
Potential topologies:
\[\gamma + p \rightarrow p + \pi^{\pm/-} + X \]

\[W = 1500 \text{ to } 1550 \text{ MeV} \]

Counts vs. \(M_X (\text{GeV}) \)
Potential topologies:

\[\gamma + p \rightarrow p + \pi^+ + \pi^- + \pi^0 \]

\[W = 1500 \text{ to } 1550 \text{ MeV} \]
Potential topologies:

\[\gamma + p \rightarrow p + X \ (photon \ detected) \]

\[W = 1500 \text{ to } 1550 \ MeV \]
Fits for $\gamma + p \rightarrow p + X$ (no charged particles other than the proton detected)

- $W = 1500$ to 1550 MeV
- $\cos(\theta_{\text{c.m.}}) = -0.4$ to -0.2

Denominator
- $N_{\frac{1}{2}} + N_{\frac{3}{2}}$

Numerator
- $N_{\frac{1}{2}} - N_{\frac{3}{2}}$

Scaled Carbon
E at threshold

\begin{align*}
\text{Observable } E \text{ for } \eta: W &= 1525 \text{ MeV} \\
\gamma + p &\rightarrow p + X \\
p_0 &= 1.00 \pm 0.04 \\
\gamma + p &\rightarrow p + X (n.c.) \\
p_0 &= 1.02 \pm 0.04 \\
\gamma + p &\rightarrow p + X (\gamma \text{ det.}) \\
p_0 &= 0.99 \pm 0.04 \\
\gamma + p &\rightarrow p + X (\gamma \text{ det., n.c.}) \\
p_0 &= 0.98 \pm 0.04 \\
\end{align*}

*\text{n.c. implies no charged particles other than the proton.}
E for η: $\gamma + p \rightarrow p + X \ (n.c.)$

Observable E for η: $W = 1525$ MeV

SAID

η-MAID

Bonn-Gatchina

VERY PRELIMINARY
E for η: $\gamma + p \rightarrow p + X$ (n.c.)

Observable E for η: $W = 1575$ MeV

SAID

η-MAID

Bonn-Gatchina

VERY PRELIMINARY
E for $\eta: \gamma + p \rightarrow p + X \ (n.c.)$

Observable E for η: $W = 1625$ MeV

SAID
η-MAID
Bonn-Gatchina

VERY PRELIMINARY
E for η: $\gamma + p \rightarrow p + X \,(n.c.)$

SAID

η-MAID

Bonn-Gatchina

Observable E for η: $W = 1675$ MeV

VERY PRELIMINARY
E for η: $\gamma + p \rightarrow p + X \ (n.c.)$

Observables E for η: $W = 1725$ MeV

SAID
\eta-MAID
Bonn-Gatchina

VERY PRELIMINARY
E for η: $\gamma + p \rightarrow p + X$ (n.c.)

Observable E for η: $W = 1775$ MeV

SAID

η-MAID

Bonn-Gatchina

VERY PRELIMINARY
E for η: $\gamma + p \rightarrow p + X \ (n.c.)$

Observable E for η: $W = 1825$ MeV

SAID

η-MAID

Bonn-Gatchina

VERY PRELIMINARY
E for η: $\gamma + p \rightarrow p + X \ (n.c.)$

Observable E for η: $W = 1875$ MeV

SAID
\eta-MAID
Bonn-Gatchina

VERY PRELIMINARY
E for η: $\gamma + p \rightarrow p + X$ (n.c.)

SAID

η-MAID

Bonn-Gatchina

Observable E for η: $W = 1925$ MeV

VERY PRELIMINARY
E vs W

Topology: $\gamma + p \rightarrow p + X$ (n.c.)
Conclusions

• Preliminary measurements for E near threshold demonstrate proper behavior. Very preliminary measurements for E have been obtained up to 1925 MeV in W.

• Polarization observables from η photoproduction will help constrain theoretical models.

• All other beam-target double polarization observables are accessible through FroST and will be analyzed.
Acknowledgements

• The CLAS collaboration
• The ASU working group:
 – Barry Ritchie
 – Michael Dugger
 – Eugene Pasyuk (now at Jlab)
Polarization systematics

• Beam polarization: < 4%

• Target polarization: < 4%