Exclusive π^0 and η electro-production at high Q^2 in the resonance region

Mark Jones
Jefferson Lab

NSTAR 2011
Jefferson Lab
Baryon form factors

- Knowledge of N^* form factors complements nucleon FF
 - $P_{33}(1232) \ I = 3/2 \ J = 3/2$ Decays to πN with 99% BR
 - Can be excited by M1, E2 and S1 multipoles
 - M1 dominates
 - $S_{11}(1535)$ Negative parity partner $I = 1/2 \ J = 1/2$ Decays to ηN with 55% BR
 - $A_{1/2}$ helicity amplitude dominates over $S_{1/2}$

- Measure Q^2 dependence of baryon form factor data
 - Map out the spatial densities of the nucleon
 - Address the role of meson cloud
 - Study the transition from meson/baryon degrees of freedom to the asymptotic regime
Previous Experiments

Magnetic FF, G^*_M, for $P_{33}(1232)$

E2/M1 for $P_{33}(1232)$

Two frameworks used to extract multipoles from experimental data
- Fixed-t dispersion relations
- Unitary Isobar Model (UIM)

Previous Experiments

Magnetic FF, G^*_M, for $P_{33}(1232)$

$\frac{p(e, e' p) \pi^0}{p(e, e' p)} = \pm \frac{E^2}{M_1}$ for $P_{33}(1232)$

New Hall C data

- Cross sections for $W = 1.08$ to 1.4 GeV
- Full θ^* and ϕ^* at $Q^2 = 6.4$ GeV2, partial at $Q^2 = 7.7$ GeV2
Helicity Amplitude $A_{1/2}$ for $S_{11}(1535)$

Previous Experiments

New Hall C data
- cross sections for $W = 1.50$ to 1.59 GeV
- Full θ^* and ϕ^* at $Q^2 = 5.7$ GeV2,
- Partial coverage at $Q^2 = 7.0$ GeV2

At very large Q^2 expect $Q^3A_{1/2}$ to be a constant.
Hall C Experiment 00-102

SOS detected electrons
$Q^2 = 6.4 \ \Theta_{SOS} = 47.5$
$Q^2 = 7.7 \ \Theta_{SOS} = 70.0$

<table>
<thead>
<tr>
<th>Q^2</th>
<th>Θ_{HMS}</th>
<th>P_{HMS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>11.2 to 24</td>
<td>2.3 to 4.7</td>
</tr>
<tr>
<td>7.7</td>
<td>11.2 to 14</td>
<td>3.2 to 4.7</td>
</tr>
</tbody>
</table>

HMS detected proton

Angular acceptance
3° in-plane
6° out-of-plane

5.5 GeV e^- Beam
Identifying exclusive channels

Eliminate radiated elastic events with cut on $\phi_{cm} = 180$
Identifying exclusive channels
Identifying exclusive channels

\[e' \xrightarrow{\Theta_e} e, \quad \gamma^* \xrightarrow{W} q, \quad P' \xrightarrow{\Theta_{pq}} q, \quad M_x \]

\[\Delta, \quad S_{11}, \quad \pi^0, \quad \eta \]

\[W(\text{GeV}) \quad M_x^2 \]
Meson Production in γp center of mass

At $Q^2 = 6.4$ GeV2

$\Theta_{cm} = 90^\circ$ $\Theta_{pq} = 3.7^\circ$

\[
\frac{d\sigma}{d\mathbf{q}^*} = \sigma_T + \epsilon\sigma_L + \epsilon\sigma_{TT} \cos 2\phi^* + \sqrt{2\epsilon(1 + \epsilon)}\sigma_{LT} \cos \phi^*
\]
Elimination of elastic radiated process

\[Q^2 = 6.4 \text{ GeV}^2 \]
Elimination of elastic radiated process

$Q^2 = 6.4 \text{ GeV}^2$

Simulation of elastic radiated events

Data

$0.25 < \cos \theta^* < 1 \quad -0.4 < \cos \theta^* < 0.25 \quad -1 < \cos \theta^* < -0.4$
Elimination of elastic radiated process

\[Q^2 = 6.4 \text{ GeV}^2 \]
\(\pi^0 \) production c.m. cross section

\[\frac{d\sigma}{d\cos(\theta^*)} = A_o + A_1 \cos \theta^* + A_2 \cos^2 \theta^* + \epsilon B_o \cos 2\phi^* \sin^2 \theta^* + \sqrt{2\epsilon(1+\epsilon)} \cos \phi^* (C_o + C_1 \cos \theta^*) \sin \theta^* \]
$Q^2 = 6.4 \text{ GeV}^2$

- Large M1- and E0+ so M1 dominance is not viable
- Need to use cross section data in global analysis framework like UIM to reliably extract multipoles
ArXiv:0906.2839v2 has UIM analysis results
ArXiv:0906.2839v2 has UIM analysis results
Multipion subtraction in η production

$W = 1.5$ GeV

$\cos \theta^*_\eta = -0.92$

$\cos \theta^*_\eta = 0.42$
η production cross section

\[
\frac{d\sigma}{d\Omega^*} = A + B \cos^* + C \cos^2\theta^* + D \sin\theta^* \cos\phi^* + E \cos\theta^* \sin\theta^* \cos\phi^* + F \sin^2\theta^* \cos 2\phi^*
\]
$Q^2 = 7.0$ data
Fit with

$$\frac{d\sigma}{d\Phi^*} = A_o + A_1 \cos \theta^*$$
Fit Coefficients
Fit Coefficients

\[\frac{d\sigma}{d\Omega^*} = A + B \cos\theta^* + C \cos^2\theta^* + D \sin\theta^* \cos\phi^* + E \cos\theta^* \sin\theta^* \cos\phi^* + F \sin^2\theta^* \cos 2\phi^* \]
Simultaneous fit both data sets with relativistic Breit-Wigner.
Q^2 dependence of A_{1/2} for S_{11}
Summary

- Measured $p(e, e'p)\pi^0$
 - Full Θ_{cm} and ϕ_{cm} for $W = 1.08$ to 1.4 GeV at $Q^2 = 6.4$ GeV2
 - Partial Θ_{cm} and ϕ_{cm} for $W = 1.08$ to 1.4 GeV $Q^2 = 7.7$ GeV2
 - Determine G^*_M, $E2/M1$ in global UIM analysis
 ArXiv:0906.2839v2 has UIM analysis results

- Measured $p(e, e'p)\eta$
 - Full Θ_{cm} and ϕ_{cm} for $W = 1.50$ to 1.59 GeV at $Q^2 = 5.7$ GeV2
 - Partial Θ_{cm} and ϕ_{cm} for $W = 1.50$ to 1.59 GeV at $Q^2 = 7.0$ GeV2
 - Determine $A_{1/2}$ for S_{11}
Backup slides
Fit total cross section with Breit-Wigner + background
Assume M1 dominance and extract G_M
Comparison to UIM extraction

\[\frac{G_M}{3G_D} \]

\[Q^2 \left[\left(\text{GeV/c}^2 \right)^2 \right] \]
Comparison to UIM extraction

![Graph showing data points and markers for different experiments]

- CLAS (2000)
- CLAS (2006)
- Hall C (1999)
- M1 dominance
- Aznauryan fit

Parameters:
- R_{EM} (%)
- $Q^2 \left[\text{(GeV/c}^2\right)^2\right]$
Comparison to UIM extraction

\[R_{SM} (%) \]

\[Q^2 \left(\text{[GeV/c}^2\text{]}^2 \right) \]
Magnetic FF, G^*_M, for $P_{33}(1232)$

In Large N_c limit with GPDs E^u and E^d from fits to proton and neutron data

$$G^*_M(t) = \frac{G^*_M(0)}{\kappa_V} \int_{-1}^{+1} dx \left\{ E^u(x, \xi, t) - E^d(x, \xi, t) \right\} = \frac{G^*_M(0)}{\kappa_V} \left\{ F_2^p(t) - F_2^n(t) \right\}$$