Electroproduction of $\Lambda(1405)$

H. Lu1 R. Schumacher1 B. Raue2 M. Gabrielyan2

1Carnegie Mellon University

2Florida International University

The 8th International Workshop on the Physics of Excited Nucleons, Newport News, VA
Outline

1 Motivation

2 Data Processing

3 Acceptance Correction and Fitting

4 Summary and References
Motivation

Reaction

$\Lambda (1405)$ From PDG

- $e^- p \rightarrow e^- K^+ \Lambda (1405)$
- $I(J^P) = 0(\frac{1}{2}^-)$
- Mass 1406 MeV, full width 50 MeV
- Decay 100% $\Sigma \pi$
- Three charge modes: $\Sigma^+ \pi^-$, $\Sigma^- \pi^+$, $\Sigma^0 \pi^0$
Two poles are at 1390+66i and 1426+16i [1].
Different Coupling

Fig. 4. The $\pi \Sigma$ mass distributions with $I = 0$ constructed from the $\bar{K}N \rightarrow \pi \Sigma$ and $\pi \Sigma \rightarrow \pi \Sigma$ amplitudes. The solid and dashed lines denote $|T_{\bar{K}N \rightarrow \pi \Sigma}|^2 q_{\pi}$ and $|T_{\pi \Sigma \rightarrow \pi \Sigma}|^2 q_{\pi}$, respectively. Units are arbitrary.

Two poles couple differently with $\pi \Sigma$ and $\bar{K}N$ [1].
Latest Results

Lineshapes of different charge channels [2].
Data Set

- E1F data set from Hall B in JLab
- Electron beam with 5.5 GeV
- Weak torus field (I=2250 A) for better acceptance
- K^+ skim
Event Selection

Decay mode: $\Sigma^+\pi^-$
Final particles: $e^-K^+p\pi^-$ with π^0 missing
Q2 Distribution

Λ (1520) as a reference
Simulation and Mix

Simulation

- Non-resonance background
 \[e^- p \rightarrow e^- K^+ \Sigma^+ \pi^- \]

- \(K^* \) production
 \[e^- p \rightarrow e^- K^{*0} \Sigma^+ \rightarrow e^- K^+ \pi^- \Sigma^+ \]

Mix of two channels

The ratio of the two channels are determined by matching simulation with data.
Comparison of Simulation

- Data Processing
- Simulation and Background
Mixture of Two Channels

- Invariant mass square of $K^+\pi^-$
- Black:E1F data points
- Red:overall fit
- Blue:component of non-resonance production
- Green:component of K^* production
- Ratio:0.137
\(\Sigma^*^0 \) Contamination

- \(\Sigma^*^0 \) can decay into \(\Sigma^+ \pi^- \) too
- Extract yield from the \(\Lambda \pi \) decay mode
- Scale the yield into the \(\Sigma^+ \pi^- \) mode
- Both \(\Sigma \pi \) and \(\Lambda \pi \) modes have the final particles \(e^- K^+ p \pi^- \)
- Conclusion is that little contamination from \(\Sigma^*^0 \)
3D Acceptance Correction

Acceptance Calculation

- Non-resonance channel $K^+ \Sigma^+ \pi^-$ is used to calculate acceptance
- Raw and simulated data are binned in Q^2 (1.0 - 3.0 GeV2), W (1.5 - 3.5 GeV) and $\cos(\Theta_K)$ in center-of-mass frame
- Data in low-acceptance areas are dropped (16 out of 9K events)
Lineshape at High Q^2

Acceptance-corrected yield in Q^2 from 1.5 to 3.0 GeV2
Acceptance-corrected yield in Q^2 from 1.0 to 1.5 GeV2
Brief

- Data is acceptance corrected
- Background is interpreted as mixture of two channels
- Lineshape in Λ (1405) region looks different from one resonance
- Lineshape looks dependent on Q^2
Lineshape and Electroproduction of Λ (1405)

Acceptance Correction and Fitting

Fit the Lineshape

Two Pole Fitting

- Black: acceptance-corrected data
- **Yellow: background** from mixture of two simulated channels
- Green: simulated Λ (1520)
- Blue: two relativistic Breit-Wigner functions

Model:
- 1.426 ± 0.016
- 1.390 ± 0.066

Fitting results:
- Mean: 1.422, 1.393
- Width: 0.016, 0.10
- Left top: Q^2 from 1.0 - 3.0 GeV2
- Right top: Q^2 from 1.4 - 3.0 GeV2
- Left bottom: Q^2 from 1.8 - 3.0 GeV2
- Right bottom: Q^2 from 2.2 - 3.0 GeV2
Comparison with other choices

- Left top: fitting with two relativistic Breit-Wigner functions
- Right top: fitting with simulation with PDG values
- Bottom: fitting with one relativistic Breit-Wigner function
Comparison of different fits

<table>
<thead>
<tr>
<th>Low limit of Q^2</th>
<th>High limit of Q^2</th>
<th>two-pole fit</th>
<th>PDG value</th>
<th>one-pole fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>2.8</td>
<td>1.40</td>
<td>3.83</td>
<td>1.85</td>
</tr>
<tr>
<td>1.36</td>
<td>2.76</td>
<td>1.29</td>
<td>4.04</td>
<td>1.73</td>
</tr>
<tr>
<td>1.32</td>
<td>2.72</td>
<td>1.11</td>
<td>4.24</td>
<td>1.61</td>
</tr>
<tr>
<td>1.28</td>
<td>2.68</td>
<td>1.07</td>
<td>4.43</td>
<td>1.60</td>
</tr>
<tr>
<td>1.24</td>
<td>2.64</td>
<td>1.02</td>
<td>4.61</td>
<td>1.53</td>
</tr>
<tr>
<td>1.2</td>
<td>2.6</td>
<td>1.04</td>
<td>4.62</td>
<td>1.48</td>
</tr>
<tr>
<td>1.16</td>
<td>2.56</td>
<td>1.19</td>
<td>4.76</td>
<td>1.67</td>
</tr>
<tr>
<td>1.12</td>
<td>2.52</td>
<td>1.18</td>
<td>4.94</td>
<td>1.67</td>
</tr>
<tr>
<td>1.08</td>
<td>2.48</td>
<td>1.35</td>
<td>5.22</td>
<td>1.72</td>
</tr>
<tr>
<td>1.04</td>
<td>2.44</td>
<td>1.37</td>
<td>5.23</td>
<td>1.75</td>
</tr>
</tbody>
</table>
Lineshape and Electroproduction of Λ (1405)

- Acceptance Correction and Fitting
- Other Choices

Reduced χ^2 of Another Loop

Comparison of different fits

<table>
<thead>
<tr>
<th>Low limit of Q^2</th>
<th>High limit of Q^2</th>
<th>two-pole fit</th>
<th>PDG value</th>
<th>one-pole fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>3.0</td>
<td>1.37</td>
<td>5.46</td>
<td>1.74</td>
</tr>
<tr>
<td>1.2</td>
<td>3.0</td>
<td>1.14</td>
<td>4.86</td>
<td>1.57</td>
</tr>
<tr>
<td>1.4</td>
<td>3.0</td>
<td>1.54</td>
<td>4.01</td>
<td>1.95</td>
</tr>
<tr>
<td>1.5</td>
<td>3.0</td>
<td>1.36</td>
<td>3.39</td>
<td>1.73</td>
</tr>
<tr>
<td>1.6</td>
<td>3.0</td>
<td>1.42</td>
<td>3.11</td>
<td>1.76</td>
</tr>
<tr>
<td>1.8</td>
<td>3.0</td>
<td>1.29</td>
<td>2.50</td>
<td>1.86</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>1.45</td>
<td>2.22</td>
<td>1.83</td>
</tr>
<tr>
<td>2.2</td>
<td>3.0</td>
<td>1.42</td>
<td>1.93</td>
<td>1.73</td>
</tr>
</tbody>
</table>
Amplitudes are in relativistic Briet-Wigner form [3] and an overall relative phase is fitted:

\[
BW(m)_{1420} = \frac{\sqrt{mm_{1420}\Gamma_{1420}(q)}}{m^2 - m_{1420}^2 - im_{1420}\Gamma_{1420}(q)}
\]

\[
BW(m)_{1390} = Ae^{i\phi} \frac{\sqrt{mm_{1390}\Gamma_{1390}(q)}}{m^2 - m_{1390}^2 - im_{1390}\Gamma_{1390}(q)}
\]
Lineshape and Electroproduction of Λ (1405)

Acceptance Correction and Fitting

Amplitude Fitting

Fitting

RooPlot of Missing mass of eK

Q^2: 1.0 - 3.0 GeV2 phase: 24.89° ± 6.60°

Q^2: 1.4 - 3.0 GeV2 phase: 30.73° ± 12.55°

Q^2: 1.8 - 3.0 GeV2 phase: 24.57° ± 6.50°

Q^2: 2.2 - 3.0 GeV2 phase: 27.41° ± 14.19°
Summary

- Lineshape of $\Lambda (1405)$ is not consistent with PDG values
- Lineshape of electroproduction varies with Q^2
- Two-pole physics nature of $\Lambda (1405)$ is the best fit with data
References

D. Jido et al

Kei Moriya

PhD Thesis

R. Schumacher and M. Sargsian

Lineshape and Electroproduction of \(\Lambda (1405) \)

Event Selection

Hyperon Spectrum

\(\Lambda (1520) \) as a reference
Scale Factor

Λπ mode
- Σ*^0 decays into Λπ with 87%
- Λ decays into pπ^- with 64%
- Total branching ratio is 56%

Σπ mode
- Σ*^0 decays into Σπ with 11.7%
- Σ^+π^- takes half of it
- Σ^+ decays into pπ^0 with 51.6%
- Overall branching ratio is 3%
- Scale Factor is 3/56 = 0.054
Select Λ to clean the data set
Exclusive Channel

Select exclusive $e^- K^+ \Sigma^*^0$ channel
Yield

Exclusive yield on Q^2
Example of Fits to Extract Yield

Example of fits at the two lowest Q^2 region
Fitting Results of Mean and Width of 1420 Dependence on Q^2
Fitting Results of Mean and Width of 1390 Dependence on Q^2
Fitting Acceptance-Corrected Yield of 1420 and 1390 Dependence on Q^2