Duality in Inclusive Structure Functions: Present and Future

Simona Malace Jefferson Lab

University of Virginia, March 13 2015

Quark-Hadron Duality

What is Quark-hadron duality?

states

Quark-hadron duality = complementarity between quark and hadron descriptions of observables

Resonance region data average to PDF based curve: $1/Q^{2n}$ corrections small or cancel on average

→ Even so, quark-hadron duality shown to hold globally and locally in many observables

Quark-Hadron Duality: Verification

F^{param.}

Example: F₂ structure function

Define duality intervals

Region	1 st	2 nd	3 rd	4 th	DIS	global
W _{min}	1.3	1.9	2.5	3.1	3.9	1.9
W _{max}	1.9	2.5	3.1	3.9	4.5	4.5

 \rightarrow there is arbitrariness in defining the local W intervals; typically try to catch peaks and valleys within one interval

Define scaling curve: PDF-based extraction constrained in the x regime where duality is verified

 \rightarrow per fixed Q² the resonance region sits at highest x; scaling curve used for duality verification must be from 2nd generation PDF fits (Alekhin *et al.*, CTEQ-JLab)

How well data average to the scaling curve?

\diamond Calculate ratio: $\int_{0}^{x_{max}} F^{data}(x,Q^2) dx$

Duality: Inclusive Measurements

Unpolarized beam, unpolarized target

 σ_{T} , σ_{L} cross sections – photo-absorption of T (helicity +/- 1) and/or L (helicity 0) γ*

Longitudinally polarized beam, longitudinally polarized target

$$\frac{d\sigma}{d\Omega dE'} = \Gamma \left(\sigma_T + \varepsilon \sigma_L + h P_z \sqrt{1 - \varepsilon^2} \sigma'_{TT} \right) \quad \sigma_T = \frac{1}{2} \left(\sigma_{1/2} + \sigma_{3/2} \right) \quad \sigma_{TT} = \frac{1}{2} \left(\sigma_{3/2} - \sigma_{1/2} \right)$$

<u>Helicity cross sections</u>: $\sigma_{1/2}$, $\sigma_{3/2}$

 \rightarrow correspond to the spin of γ^* and proton anti-aligned (1/2) and aligned (3/2)

ightarrow in the Bjorken limit proportional to the positive and negative helicity PDFs

 \rightarrow defined to be positive

Dimensionless Helicity Structure Functions: $\mathbf{H}_{1/2} = \frac{MK}{4\pi^2 \alpha} \sigma_{1/2}, \ \mathbf{H}_{3/2} = \frac{MK}{4\pi^2 \alpha} \sigma_{3/2}$

Duality: F₂ Proton Structure Function

Unpolarized beam (electron), unpolarized target (proton)

<u>Alekhin et al.: NNLO + HT + TM</u>

 \rightarrow Ratio within 10% globally

 \rightarrow For 4th RES region and DIS, ratio very close to 1 for entire Q² range analyzed

→ For 2nd and 3rd regions ratio within 5-10 % for entire Q² range analyzed

1st : special case

→ models predict stronger violations of duality

→ calculation based on handbag diagram may break at such low W

→ at the largest x, QCD fits poorly constrained -> difficult to test duality

S.P. Malace et al., Phys. Rev. C 80 035207 (2009)

Duality: F₂ Deuteron Structure Function

Unpolarized beam (electron), unpolarized target (deuteron)

 F_2^{d} (Alekhin) = F_2^{p} (Alekhin) * d/p (from empirical fit)

→ Ratio within 5-10% : globally, DIS,
4th, 3rd, 2nd

1st : special case

→ models predict stronger violations of duality

 \rightarrow calculation based on handbag diagram may break at such low W

→ at the largest x, QCD fits poorly constrained -> difficult to test duality

→ d/p fit not well constrained at large x

Duality: F₂ Neutron Structure Function

Unpolarized beam (electron), unpolarized target (deuteron, proton)

ightarrow Impulse Approximation – virtual photon scatters incoherently from individual nucleons

$$F_{2}^{D} = \widetilde{F_{2}^{p}} + \widetilde{F_{2}^{n}} + \underbrace{\delta^{off}}_{0} F_{2}^{D} \qquad \widetilde{F_{n,p}^{p}}_{2} = \int_{x}^{M_{D}/M} dy f(y,y) F_{n,p}^{n,p} \left(\frac{x}{y}\right)$$
off-shell correction smearing function

 \rightarrow F₂ⁿ via the additive extraction method: solve equation iteratively

 $f(y,\gamma) = N\delta(y-1) + \delta f(y,\gamma) \longrightarrow \text{ finite width of smearing function}$ normalization of smearing function

$$\widetilde{F_{2}^{n}}(x) = NF_{2}^{n}(x) + \int_{x}^{M_{D}/M} dyf(y,\gamma)F_{2}^{n}\left(\frac{x}{y}\right) \rightarrow \text{perturbation}$$

Initial guess for the neutron structure function
$$F_{2}^{n(1)}(x) = F_{2}^{n(0)}(x) + \frac{1}{N} \left[\widetilde{F_{2}^{n}}(x) - \int_{x}^{M_{D}/M} dyf(y,\gamma)F_{2}^{n(0)}\left(\frac{x}{y}\right) \right]$$

Duality: F₂ Neutron Structure Function

Unpolarized beam (electron), unpolarized target (deuteron, proton)

 \rightarrow F₂ⁿ extracted at fixed Q² from proton and deuteron data; the PDF-based F₂ⁿ from Alekhin *et al.* used as scaling curve for duality verification

→ Ratio within 10% globally and 15%-20% for 3rd, 2nd

S.P. Malace, Y. Kahn, W. Melnitchouk, C. Keppel, Phys. Rev. Lett. 104, 102001 (2010)

different way to access the neutron in Ioana's talk

Duality: Helicity Structure Functions

Verified

Longitudinally polarized beam (electron), longitudinally polarized target (NH₃)

 $H_{1/2} = F_1 + g_1 - \frac{Q^2}{\nu^2}g_2$ $H_{3/2} = F_1 - g_1 + \frac{Q^2}{\nu^2}g_2$ g_1 data from CLAS E91-023

→ Ratio within 10% globally for $H_{1/2}$ and within 20% for $H_{3/2}$ S.P. Malace, W. Melnitchouk, A. Psaker, Phys. Rev. C 83, 035203 (2011)

Future: E12-10-002 in Hall C at JLab, 2016-2017

✤ E12-10-002: Resonance Region coverage

S.P. Malace – contact and spokesperson M.E. Christy, C. Keppel, I. Niculescu spokespeople

E12-10-002: greatly extends the x coverage per resonance region

Future: E12-10-002 in Hall C at JLab, 2016-2017

✤ E12-10-002: Resonance Region coverage

S.P. Malace – contact and spokesperson M.E. Christy, C. Keppel, I. Niculescu spokespeople

E12-10-002: greatly extends the Q² coverage per resonance region

Future: E12-14-002 in Hall C at JLab, 2019-2020?

S.P. Malace - Spokesperson and contact E. Christy, D. Gaskell, C. Keppel, P. Solvignon spokespeople

 E12-14-002 at Jefferson Lab plans to extract in a model independent fashion via the Rosenbluth technique:

x: 0.1 - 0.6 ; Q²: 1 - 5 GeV²

Each central L/T extraction (black stars) :

 \rightarrow Hall C spectrometers, SHMS and HMS \rightarrow up to 6 beam energies

 \rightarrow D, Cu at all kinematics shown; H, C, Au at select kinematics

- Statistical goal: 0.2 0.5% (depending on the target) in a W² bin of 0.1 GeV²
- → Resonance Region covered within the acceptance of the spectrometers
- → Allows for duality studies on separated structure functions on proton and nuclei

Open Questions

 \rightarrow I showed studies of quark-hadron duality in the proton, deuteron and neutron F₂ structure functions as well as in the helicity structure functions H_{1/2} and H_{3/2}

The procedure to verify how well do resonance region data average to "scaling curves" is rather simple:

- \rightarrow We define local and global resonance regions using W as parameter
- → We generate the "scaling curve" at the exact same kinematics as the data (discrete points from models, fits)
- \rightarrow We apply the same integration procedure to data and generated "scaling curve"
- → The ratio of integrals from data and scaling curves will then ONLY be a measure of how well the data average to the scaling curve
 - There is arbitrariness in defining the local W intervals
 → how should we quantify this arbitrariness?
 - What is a "reasonable" scaling curve?
 - ightarrow Since we study quark-hadron duality, my first choice would be a PDF-based scaling curve

 \rightarrow Second generation PDF fits better constrained at large x are ideal for these studies; make sure that the "scaling curve" of choice is well constrained in the kinematic region of interest

Open Questions

 \rightarrow I showed studies of quark-hadron duality in the proton, deuteron and neutron F₂ structure functions as well as in the helicity structure functions H_{1/2} and H_{3/2}

 \rightarrow Resonance region data will be available from upcoming JLab experiments: E12-10-002 (and E12-14-002) and studies of duality verification will be extended to larger x and Q²

- How do we move past the "verification of duality" point?
- How do we make the observation of duality practically useful?

In the context of PDF fits:

→ can we now use the PDF fits framework (CTEQ-JLab) to understand how duality arises?

 \rightarrow can we develop a robust procedure to yield duality averaged data for use in PDF fits, for example?

→ based on the applicability of QCD calculations at low values of W, which resonance region data would should we include?

- criterion proposed by Alberto Accardi: separation between target jet and current jet

Special thanks to Simonetta for organizing this workshop

Backup

Duality: Helicity Structure Functions

- Longitudinally polarized beam (electron), longitudinally polarized target (NH₃)
- Choice of F1, g1, g2 $H_{1/2} = F_1 + g_1 \frac{Q^2}{\nu^2}g_2 \quad H_{3/2} = F_1 g_1 + \frac{Q^2}{\nu^2}g_2$
- "Data" -> g₁ from E91-023 (CLAS) K.V. Dharmawardane et al., Phys. Lett. B 641, 11 (2006)
 - -> F₁ from Christy-Bosted fit E.M. Christy et al., Phys. Rev. C 81, 055213 (2010)

-> g₂ from Simula *et al.*, S. Simula *et al.*, Phys. Rev. D 65, 034017 (2002)

proton versus Arrows indicate the masses data obtained with 1.6 GeV zero is the estimated contribution from the The solid line ||/D. Bands at the bottom of all figures indicate of our parametrization $+ \eta A_2$ on the data. GeV , for three bins in Q^2 of several resonances. The first two panels show rom the Results for the asymmetry A_{\parallel}/D The dashed line close unmeasured asymmetry A₂ to A final-state invariant mass W data points is the the last while systematic errors. energy close to the world data. Fig. 1. beam

Fig. 2. Measured ratio g_1/F_1 as a function of momentum transfer squared Q^2 for several bins in *x* for the proton. A few data points from SLAC experiments E143 [6] (open triangles) and E155 [8] (open squares) are also shown for comparison, as well as data from the first run with CLAS [12,13] (open circles). The dashed line represents our parametrization of the world data in the DIS region [8]. Arrows indicate the conventional limit of the resonance region at W = 2 GeV.

Duality: Helicity Structure Functions

Longitudinally polarized beam (electron), longitudinally polarized target (NH₃)

Choice of F1, g1, g2
$$H_{1/2} = F_1 + g_1 - \frac{Q^2}{\nu^2}g_2 \quad H_{3/2} = F_1 - g_1 + \frac{Q^2}{\nu^2}g_2$$

"Theory"

*

-> g1 from Blümlein and Böttcher

Nucl. Phys. B 841, 205 (2010)

-> F1 from ABKM

Phys. Rev. D 81, 014032 (2010)

-> g2 from Wandzura-Wilczek relation with g1 from BB08

Duality: Scaling Curves

Duality: F₂ Proton Structure Function

Comparison: data to CTEQ6 (PDF fits with W² > 12.25 GeV²)

Ratio ~ 1 at Q^2 ~ 1.5 GeV² then rises with increasing Q^2 and reaches a plateau at ~ 4 GeV²; above 4 GeV² Q^2 dependence saturates

Not failure of pQCD to describe the Q² evolution but paucity in the strength of PDFs at large x

Ratio becomes constant at different value for each RES region

Possibly related to unconstrained PDFs strength at large x

S. Malace et al., Phys. Rev. C 80, 035207 2009

Duality: F₂ Proton Structure Function ALEKHIN

Good description at Q^2 = 3,5 GeV² (except for largest x regime: 1st RES)

 $Q^2 = 7 \text{ GeV}^2$: largest x (ALEKHIN least constrained) => growing discrepancy

 $Q^2 = 1 \text{ GeV}^2$: discrepancy as x grows \Leftrightarrow reached limits of applicability

0.9

(d)