University of Virginia, March 13, 2015

Duality from QCD?

Wally Melnitchouk

Jefferson Lab

Duality and QCD

- Operator product expansion
\longrightarrow expand moments of structure functions in powers of $1 / Q^{2}$

$$
\begin{aligned}
M_{n}\left(Q^{2}\right) & =\int_{0}^{1} d x x^{n-2} F_{2}\left(x, Q^{2}\right) \\
& =A_{n}^{(2)}+\frac{A_{n}^{(4)}}{Q^{2}}+\frac{A_{n}^{(6)}}{Q^{4}}+\cdots
\end{aligned}
$$

matrix elements of operators with specific "twist" τ

Duality and QCD

- Operator product expansion
\longrightarrow expand moments of structure functions in powers of $1 / Q^{2}$

$$
\begin{aligned}
M_{n}\left(Q^{2}\right) & =\int_{0}^{1} d x x^{n-2} F_{2}\left(x, Q^{2}\right) \\
& =A_{n}^{(2)}+\frac{A_{n}^{(4)}}{Q^{2}}+\frac{A_{n}^{(6)}}{Q^{4}}+\cdots
\end{aligned}
$$

- If moment \approx independent of Q^{2}
\longrightarrow higher twist terms $A_{n}^{(\tau>2)}$ small
\square Duality \longleftrightarrow suppression of higher twists
de Rujula, Georgi, Politzer Ann. Phys. 103, 315 (1975)

Carlson \& Mukhopadhyay PRD 41, 2343 (1990)
"global duality"

Duality and QCD

- Total higher twist is "small" at scales $Q^{2} \sim \mathcal{O}\left(1 \mathrm{GeV}^{2}\right)$
\rightarrow on average, nonperturbative interactions between quarks and gluons are not dominant (at these scales)
\rightarrow nontrivial interference between resonances

- Can we understand the resonance-scaling (parton) relation dynamically, at quark level?
\rightarrow is duality an accident?
- For simple (toy) quark model with spin-flavor symmetric wave function
low energy
\rightarrow coherent scattering from quarks $d \sigma \sim\left(\sum_{i} e_{i}\right)^{2}$
high energy
\rightarrow incoherent scattering from quarks $d \sigma \sim \sum_{i} e_{i}^{2}$
- For duality, these must be equal...
\rightarrow how can square of a sum become sum of squares?

- Dynamical cancellations

\rightarrow e.g. for toy model of two quarks bound in a harmonic oscillator potential, structure function given by

$$
F\left(\nu, \mathbf{q}^{2}\right) \sim \sum_{n}\left|G_{0, n}\left(\mathbf{q}^{2}\right)\right|^{2} \delta\left(E_{n}-E_{0}-\nu\right)
$$

\rightarrow charge operator $\Sigma_{i} e_{i} \exp \left(i \mathbf{q} \cdot \mathbf{r}_{i}\right)$ excites even partial waves with strength $\propto\left(e_{1}+e_{2}\right)^{2}$ odd partial waves with strength $\propto\left(e_{1}-e_{2}\right)^{2}$
\rightarrow resulting structure function

$$
F\left(\nu, \mathbf{q}^{2}\right) \sim \sum_{n}\left\{\left(e_{1}+e_{2}\right)^{2} G_{0,2 n}^{2}+\left(e_{1}-e_{2}\right)^{2} G_{0,2 n+1}^{2}\right\}
$$

\rightarrow if states degenerate, cross terms ($\sim e_{1} e_{2}$) cancel when averaged over nearby even and odd parity states

- Dynamical cancellations

\rightarrow duality is realized by summing over at least one complete set of even and odd parity resonances

Close \& Isgur, PLB 509, 81 (2001)
\rightarrow in NR Quark Model, even \& odd parity states generalize to $56(L=0)$ and $70(L=1)$ multiplets of spin-flavor $\operatorname{SU}(6)$

representation	${ }^{2} \mathbf{8}\left[\mathbf{5 6}^{+}\right]$	${ }^{4} \mathbf{1 0}\left[\mathbf{5 6}^{+}\right]$	${ }^{2} \mathbf{8}\left[\mathbf{7 0}^{-}\right]$	${ }^{4} \mathbf{8}\left[\mathbf{7 0}^{-}\right]$	${ }^{2} \mathbf{1 0}\left[\mathbf{7 0}^{-}\right]$	Total
F_{1}^{p}	$9 \rho^{2}$	$8 \lambda^{2}$	$9 \rho^{2}$	0	λ^{2}	$18 \rho^{2}+9 \lambda^{2}$
F_{1}^{n}	$(3 \rho+\lambda)^{2} / 4$	$8 \lambda^{2}$	$(3 \rho-\lambda)^{2} / 4$	$4 \lambda^{2}$	λ^{2}	$\left(9 \rho^{2}+27 \lambda^{2}\right) / 2$

$\lambda(\rho)=$ (anti) symmetric component of ground state wave function

> "local duality"

- Accidental cancellations of charges?

cat's ears diagram (4-fermion higher twist $\sim 1 / Q^{2}$)

proton $\mathrm{HT} \sim 1-\left(2 \times \frac{4}{9}+\frac{1}{9}\right)=0$!
neutron $\mathrm{HT} \sim 0-\left(\frac{4}{9}+2 \times \frac{1}{9}\right) \neq 0$
\rightarrow here duality in proton is a coincidence
\rightarrow should not hold for neutron!

Neutron: the smoking gun

Malace et al., PRL 104, 102001 (2010)

duality violations < 10%
\rightarrow duality is not accidental, but a general feature of resonance-scaling transition!

How to build up a scaling structure function from $\gamma^{*} N N^{*}$ transitions?

- Earliest attempts predate QCD
\rightarrow e.g. harmonic oscillator spectrum $M_{n}^{2}=(n+1) \Lambda^{2}$ including states with spin $=1 / 2, \ldots, n+1 / 2$ (n even: $I=1 / 2, \quad n$ odd: $I=3 / 2$)
\rightarrow at large Q^{2} magnetic coupling dominates

$$
G_{n}\left(Q^{2}\right)=\frac{\mu_{n}}{\left(1+Q^{2} r^{2} / M_{n}^{2}\right)^{2}}
$$

$$
r^{2} \approx 1.41
$$

\rightarrow in Bjorken limit, $\sum_{n} \longrightarrow \int d z, \quad z \equiv M_{n}^{2} / Q^{2}$

$$
F_{2} \sim\left(\omega^{\prime}-1\right)^{1 / 2}\left(\mu_{1 / 2}^{2}+\mu_{3 / 2}^{2}\right) \int_{0}^{\infty} d z \frac{z^{3 / 2}\left(1+r^{2} / z\right)^{-4}}{z+1-\omega^{\prime}+\Gamma_{0}^{2} z^{2}}
$$

\rightarrow scaling function of $\omega^{\prime}=\omega+M^{2} / Q^{2} \quad(\omega=1 / x)$

How to build up a scaling structure function from $\gamma^{*} N N^{*}$ transitions?

- Earliest attempts predate QCD
$\rightarrow e . g$. harmonic oscillator spectrum $M_{n}^{2}=(n+1) \Lambda^{2}$
including states with spin $=1 / 2, \ldots, n+1 / 2$
(n even: $I=1 / 2, \quad n$ odd: $I=3 / 2$)
Domokos et al., PRD 3, 1184 (1971)
\rightarrow in $\Gamma_{n} \rightarrow 0$ limit

$$
F_{2} \sim\left(\mu_{1 / 2}^{2}+\mu_{3 / 2}^{2}\right) \frac{\left(\omega^{\prime}-1\right)^{3}}{\left(\omega^{\prime}-1+r^{2}\right)^{4}}
$$

$c f$. Drell-Yan-West relation

$$
G\left(Q^{2}\right) \sim\left(\frac{1}{Q^{2}}\right)^{m} \Longleftrightarrow F_{2}(x) \sim(1-x)^{2 m-1}
$$

\rightarrow similar behavior found in many other models
Einhorn, PRD 14, 3451 (1976) ('t Hooft model)
Greenberg, PRD 47, 331 (1993) (NR scalar quarks in HO potential)
Pace, Salme, Lev, PRC 57, 2655 (1995) (relativistic HO with spin)
Isgur et al., PRD 64, 054005 (2001) (transition to scaling)

How to build up a scaling structure function from $\gamma^{*} N N^{*}$ transitions?

- More recent phenomenological analyses at finite Q^{2}
\rightarrow additional constraints from threshold behavior at $\mathrm{q} \rightarrow 0$ and asymptotic behavior at $Q^{2} \rightarrow \infty \quad$ Davidorsky \& Sruminusk,

Phys.Atom.Nucl. 66, 1328 (2003)

$$
\left(1+\frac{\nu^{2}}{Q^{2}}\right) F_{2}^{R}=M \nu\left[\left|G_{+}^{R}\right|^{2}+2\left|G_{0}^{R}\right|^{2}+\left|G_{-}^{R}\right|^{2}\right] \delta\left(W^{2}-M_{R}^{2}\right)
$$

$\rightarrow 21$ isospin- $1 / 2 \& 3 / 2$ resonances (with mass $<2 \mathrm{GeV}$)

$$
\begin{align*}
\left|G_{ \pm}^{R}\left(Q^{2}\right)\right|^{2} & =\left|G_{ \pm}^{R}(0)\right|^{2}\left(\frac{|\vec{q}|}{|\vec{q}|_{0}} \frac{\Lambda^{\prime 2}}{Q^{2}+\Lambda^{\prime 2}}\right)^{\gamma_{1}}\left(\frac{\Lambda^{2}}{Q^{2}+\Lambda^{2}}\right)^{m_{ \pm}} \tag{+,0,-}\\
\left|G_{0}^{R}\left(Q^{2}\right)\right|^{2} & =C^{2}\left(\frac{Q^{2}}{Q^{2}+\Lambda^{\prime \prime 2}}\right)^{2 a} \frac{q_{0}^{2}}{|\vec{q}|^{2}}\left(\frac{|\vec{q}|}{|\vec{q}|_{0}} \frac{\Lambda^{\prime 2}}{Q^{2}+\Lambda^{\prime 2}}\right)^{\gamma_{2}}\left(\frac{\Lambda^{2}}{Q^{2}+\Lambda^{2}}\right)^{m_{0}}
\end{align*}
$$

\rightarrow in $x \rightarrow 1$ limit,

$$
F_{2}(x) \sim(1-x)^{m_{+}}
$$

How to build up a scaling structure function from $\gamma^{*} N N^{*}$ transitions?

- More recent phenomenological analyses at finite Q^{2}

\rightarrow valence-like structure of dual function suggests "two-component duality":
- valence (Reggeon exchange) dual to resonances $F_{2}^{(\text {val })} \sim x^{0.5}$
- sea (Pomeron exchange) dual to background $F_{2}^{(\text {sea) }} \sim x^{-0.08}$

$$
\rightarrow \text { T. Londergan }
$$

Open questions

- Is there a QCD-based understanding of local duality?
\rightarrow quark models give insights into emergence of "scaling" behavior from resonances
\rightarrow large- N_{c} ? HQET?
- Role of nonresonant background in "resonance" cancellations?
\rightarrow mostly unexplored territory
- Definitions of duality
\rightarrow which moments (C-N, Nachtmann)?
\rightarrow which structure functions (resonance region vs. LT, or total low- W vs. high- W)?

Open questions

- Why does "local elastic duality" work at all?

