Duality in Polarized Structure Functions

Oscar A. Rondón INPP - University of Virginia

Open Questions in Parton-Hadron Duality UVA March 13, 2015

Bloom-Gilman Local Duality (1971)

• Integral of proton $W_2(v,Q^2)$ at fixed Q^2 over limited ranges of v(in the region 1.071 GeV $\leq W \leq 2$ GeV) equals the integral of the scaling function $F_2(\omega') = vW_2(\omega')$ over the matching ω' range.

$$\frac{2M}{Q^{2}}\int_{v_{a}}^{v_{b}}dvvW_{2}(v,Q^{2})=\int_{\omega'_{a}}^{\omega'_{b}}d\omega'F_{2}(\omega')$$
$$v_{a,b}=\frac{W_{a,b}^{2}-M^{2}+Q^{2}}{2M}\omega'_{a,b}=1+\frac{W_{a,b}^{2}}{Q^{2}}$$

FIG. 3. The function $\nu W_2(\nu, q^2)$ plotted versus $\omega' = 1$ + W^2/q^2 from an interpolation of data to fixed q^2 values of 0.75, 1.00, 1.25, 1.50, and 1.75 GeV². The solid line is the scaling-limit curve, $\nu W_2(\omega')$, a smooth fit (Ref. 12) to the data in the scaling region. The arrow indicates the position of the elastic peak.

2

Early looks at Spin B-G (SBG)

Proposal:	PR-95-005, Hall C
Spokespersons:	O. Rondon-Aramayo
Title:	Precision Measurement of the Nucleon Spin Structure Functions in the Region of the Nucleon Resonances

Motivation:

This experiment seeks to measure inclusive asymmetries in the resonance region on polarized NH₃ and ND₃ targets. Two values of Q^2 (1 and 5.5 (GeV/c)²) would be studied. Physics goals include studying duality in spin observables, twist-3 processes via the transverse asymmetry and testing the pQCD prediction that $E_{1+}/M_{1+} \rightarrow 1$ for Delta excitation at high Q^2 .

- Polarized local duality first mentioned in JLab PR95-005 (E01-006 RSS)

Carlson & Mukhopadhyay 1997

- E143 9.7 GeV 7° g_1^{p} data in resonances compared with fit to DIS g_1^{p} and to DIS data
- No clear signal of SBG 03/13/15

Proton Spin Structure Functions

• $\boldsymbol{g}_1, \boldsymbol{g}_2$ from measured A_1 and A_2

$$g_{1} = \frac{F_{1}}{1 + \gamma^{2}} (A_{1} + \gamma A_{2})$$

$$g_{2} = \frac{F_{1}}{1 + \gamma^{2}} (\frac{A_{2}}{\gamma} - A_{1}); \quad \gamma = \frac{2 \times M}{\sqrt{Q^{2}}}$$

 $- F_1$ from F1F209

• Precision proton data from JLab E01-006 (*RSS*)

- First g_2^{p} world resonances data

• New SANE HMS data at lower x same Q^2 and also higher Q^2 03/13/15

Proton Spin Structure Functions

• $\boldsymbol{g}_1, \boldsymbol{g}_2$ from measured A_1 and A_2

$$g_{1} = \frac{F_{1}}{1 + \gamma^{2}} (A_{1} + \gamma A_{2})$$

$$g_{2} = \frac{F_{1}}{1 + \gamma^{2}} (\frac{A_{2}}{\gamma} - A_{1}); \quad \gamma = \frac{2 \times M}{\sqrt{Q^{2}}}$$

 $-F_1$ from F1F209

• Precision proton data from JLab E01-006 (*RSS*)

- First g_2^{p} world resonances data

• New SANE HMS data at lower x same Q^2 and also higher Q^2 03/13/15

Proton Spin Structure Functions

• $\boldsymbol{g}_1, \boldsymbol{g}_2$ from measured A_1 and A_2

$$g_{1} = \frac{F_{1}}{1 + \gamma^{2}} (A_{1} + \gamma A_{2})$$

$$g_{2} = \frac{F_{1}}{1 + \gamma^{2}} (\frac{A_{2}}{\gamma} - A_{1}); \quad \gamma = \frac{2 \times M}{\sqrt{Q^{2}}}$$

 $- F_1$ from F1F209

• Precision proton data from JLab E01-006 (*RSS*)

- First g_2^{p} world resonances data

• New SANE HMS data at lower x same Q^2 and also higher Q^2 03/13/15

Bloom-Gilman Local Duality for g_1^{p}

- Ratio of local integrals $\Gamma_1^{\text{res}}/\Gamma_1^{\text{DIS}}$ $\Gamma_1(Q_0^2) = \int_{W_{lo}}^{W_{hi}} dW g_1(W, Q_0^2)$ $(dW \Leftrightarrow dx \text{ at fixed } Q^2)$
 - use fit to g_1 in the resonances + g_1 from PDF's, evolved to same fixed Q^2 with TMC's

	INTEGRAL RATIOS				
			Resonances/PDFS	Error	
Resonances	W LOW	W HIGH	Average	DATA	PDFs
Delta	1.11	1.30	-0.26	0.03	0.02
R1350	1.30	1.39	0.74	0.05	0.03
R2	1.39	1.68	1.28	0.09	0.03
R3	1.68	1.81	1.26	0.09	0.03
GLOBAL	1.08	1.91	0.86	0.06	0.02
03/13/15					

Bloom-Gilman Local Duality for g_1^{p}

- Ratio of local integrals $\Gamma_1^{\text{res}}/\Gamma_1^{\text{DIS}}$ $\Gamma_1(Q_0^2) = \int_{W_{lo}}^{W_{hi}} dW g_1(W, Q_0^2)$ $(dW \Leftrightarrow dx \text{ at fixed } Q^2)$
 - use fit to g_1 in the resonances + g_1 from PDF's, evolved to same fixed Q^2 with TMC's

	INTEGRAL RATIOS				
			Resonances/PDFS	Error	
Resonances	W LOW	W HIGH	Average	DATA	PDFs
Delta	1.11	1.30	-0.26	0.03	0.02
R1350	1.30	1.39	0.74	0.05	0.03
R2	1.39	1.68	1.28	0.09	0.03
R3	1.68	1.81	1.26	0.09	0.03
Global	1.08	1.91	0.86	0.06	0.02
03/13/15					

Only *approximate* Global Duality in *RSS*

Large *x* resummations increase discrepancy by 1.3 (PR **D69** (2004) 014505)

Bloom-Gilman Local Duality for g_1^{p}

- Ratio of local integrals $\Gamma_1^{\text{res}}/\Gamma_1^{\text{DIS}}$ $\Gamma_1(Q_0^2) = \int_{W_{lo}}^{W_{hi}} dW g_1(W, Q_0^2)$ $(dW \Leftrightarrow dx \text{ at fixed } Q^2)$
 - use fit to g_1 in the resonances + g_1 from PDF's, evolved to same fixed Q^2 with TMC's

			INTEGRAL RATIOS	AL RATIOS		
			Resonances/PDFS	Error		
Resonances	W LOW	W HIGH	Average	DATA	PDFs	
Delta	1.11	1.30	-0.26	0.03	0.02	
R1350	1.30	1.39	0.74	0.05	0.03	
R2	1.39	1.68	1.28	0.09	0.03	
R3	1.68	1.81	1.26	0.09	0.03	
GLOBAL	1.08	1.91	0.86	0.06	0.02	
03/13/15						

Global Spin Duality

- Bloom Gilman duality for g_1
 - Approximate Local Duality works only above $\Delta(1232)$
 - Global duality (from $W > \pi$ threshold or from elastic) obtains above $Q^2 > 1.8 \text{ GeV}^2$
 - seen in p, d, and ³He
- No DIS g_2 yet (only g_2^{WW}):
 - PDF's not yet available. No $g_2(x,Q^2)$ models, either.
- $\begin{array}{r} \text{ DIS } \boldsymbol{g}_2 \text{ SANE and Hall A} \\ \text{ E06-014 data coming} \end{array}$

Future Possibilities

- Global duality works for $g_1(Q^2 > 1.8 \text{ GeV}^2)$: apply it to moments
 - Need both g_1 and g_2 for Nachtmann moments.
 - Region of integration: for *n*th. moment, perturbative HT's require
 - $n \ll Q^2/M_0^2$; $M_0^2 \sim (0.4-0.5 \text{GeV})^2$; $n = 4 < 1.3 \text{ GeV}^2/M_0^2 \sim 8$ (Ji & Unrau, PRD 52 (1995)72)
 - Local region of integration $|\xi| \le M_0^2/Q^2$: narrows at high Q^2
- Test g_1^{p} local duality at 1.8 GeV²
 - Q^2 trends, especially P(1232); estimate moment's errors from duality.
- g_2^{p} Duality?
 - Take ratios of x, Q^2 dependent fits to global DIS data over resonances data; JAM PDF's with twist-3; any g_2 models?

03/13/15

g_2 in DIS and Resonances

- Hall C SANE (E07-003)
- 7/3/13 0.3 < x < 0.8 2.5 < $Q^2 < 6.5$

- Neutron (on ³He)
 - Hall A d2n (E06-014) (g₂^{3He} PRL 113, 022002 (2014))