

October 20-22, 2005 Jefferson Lab Newport News, VA USA

Search for pentaquarks in $\gamma p \rightarrow \Theta^+ \overline{K}{}^0$ in high statistics experiments at CLAS

<u>M. Battaglieri</u> R. De Vita V. Kubarovsky

and the CLAS Collaboration

• The g11 experiment

• $\gamma \ p \rightarrow \overline{K}{}^0 \ \Theta^+ \rightarrow \pi^+ \ \pi^- \ K^+ \ (n)$

• $\gamma \mathbf{p} \rightarrow \overline{\mathbf{K}}^{\mathbf{0}} \Theta^{+} \rightarrow \pi^{+} \pi^{-} \mathbf{p} (\mathbf{K}^{\mathbf{0}})$ $N_{ew} r_{esulti}$

12 (almost-all) 'low-energy' experiments found evidence of a possible pentaquark state

- Different probes/targets
- Different Labs
- Some have high statistical significance

- Structures have few counts in peaks
- Mass difference
- Background shape not known
- Strong cuts to enhance the signal
- Kinematical reflections
- Some of them do not tag Strangeness

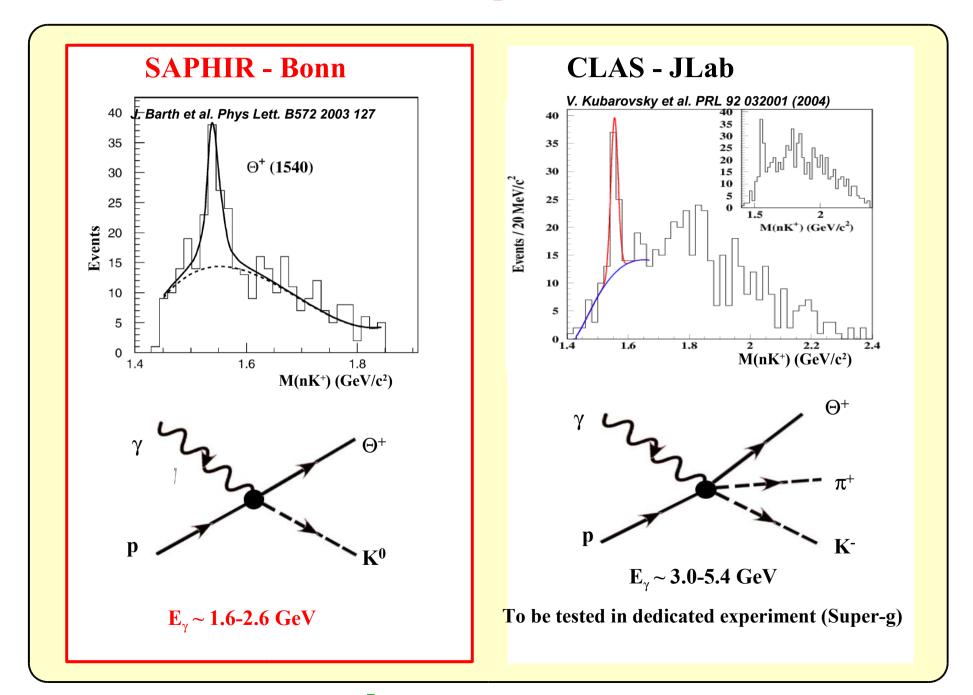
10 high-energy experiments did not find any signal

- Production mechanisms?
- Background reactions ?
- Different reactions/kinematics
- Spectra affected by different acceptance

high statisticsset upper limit

To solve the controversy about the existence of the $\Theta^+(1540)$ pentaquark is needed definitive confirmation from dedicated <u>low energy</u> experiments

- high statistics
- high resolution


Search for Pentaquarks at JLab

A comprehensive program to search for pentaquarks with high statistics and high resolution electro and photoproduction experiments is in progress at Jefferson Lab

New experiments seeking evidence of pentaquarks in Hall A and B (CLAS) were approved in 2003-2004 with the goal of confirming previous results and explore new kinematics with at least a factor 10 increase in statistics

g10	deuteron	Ε _γ ~ 1.0-3.5 GeV	data taking completed in 2004
g11	proton	$\mathbf{E}_{\gamma} \sim \mathbf{1.6-3.8 \ GeV}$	data taking completed in 2004
eg3	deuteron	$\mathbf{E}_{\gamma} \sim \mathbf{4.0-5.4 \ GeV}$	data taking completed in 2005
Super-g	proton	$E_{\gamma} \sim 3.8 - 5.7 \text{ GeV}$	planned for 2006
HAll-A	proton/deuteron	$E_{e} \sim 5.0 \text{ GeV}$	planned for 2006

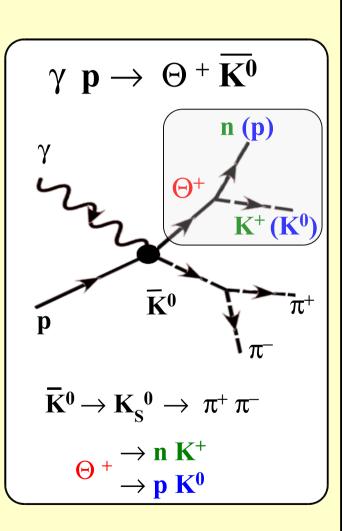
Θ^+ Search in Exclusive Photoproduction off the proton

g11@JLab

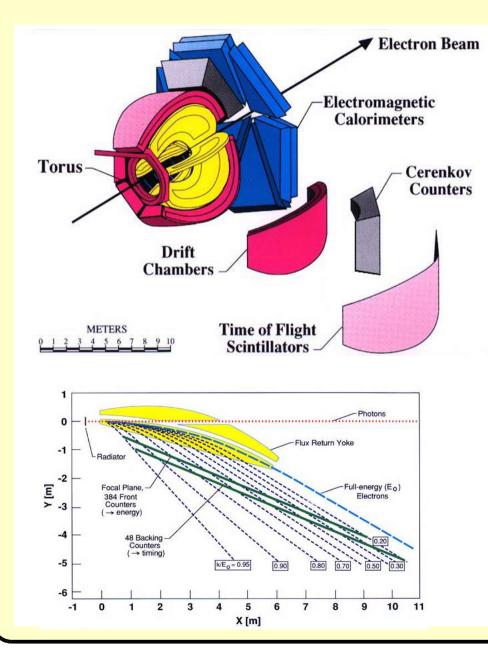
Spectroscopy of Exotic Baryons with CLAS: Search for Ground and First Excited States

M. Battaglieri R. De Vita V. Koubarovsky and the CLAS Collaboration

Proposed measurement and Primary Goals:

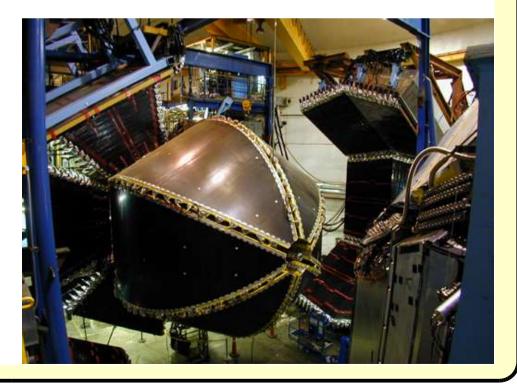

• Search for $\Theta^+(1540)$ and possible excited states in γ -p

interaction above threshold ($E_{\gamma} = 1.6 - 3.8 \text{ GeV}$)


- Collect more than 10 times the statistics of previous measurements in the same kinematics
- Establish the mass of any observed peak with 2 MeV acc.
- Determine total and differential cross section

Status of the experiment

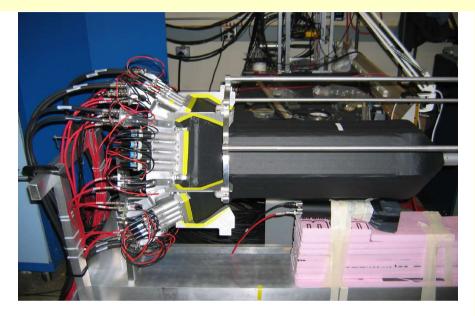
- New experiment approved by JLab PAC25 in January 2004
- Run in May-July 2004, with a total of 7•10⁹ triggers recorded (Luminosity ~70 pb⁻¹)
- Data calibration and processing completed in January 2005
- Results for this reaction



The CEBAF Large Acceptance Spectrometer CLAS

Performance

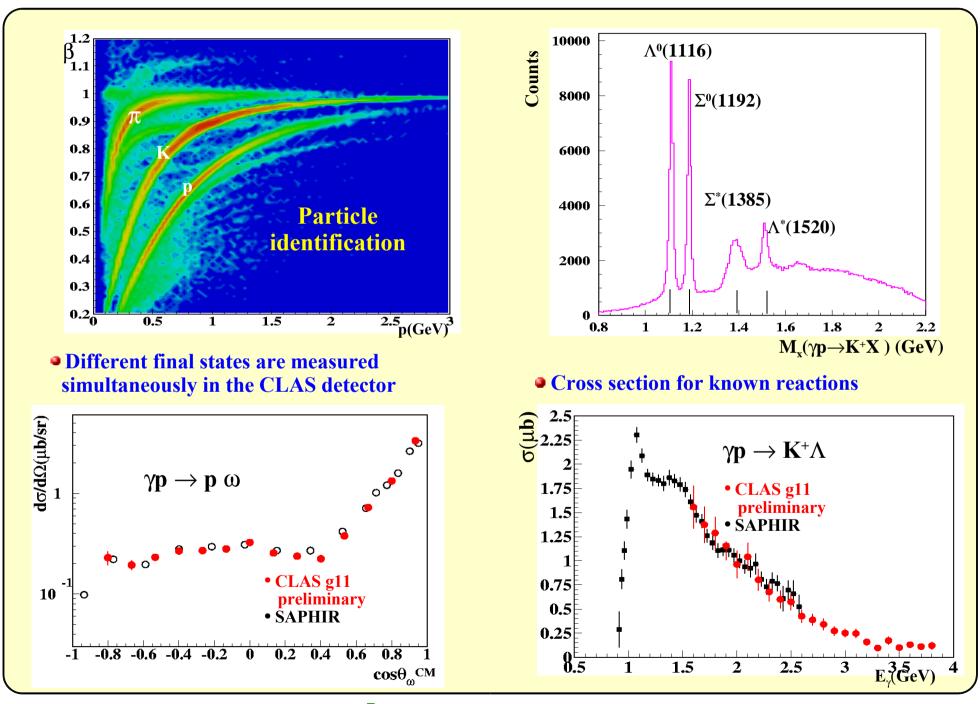
★ L = 10^{34} cm⁻² s⁻¹ ★ \int B dl = 2.5 T m ★ $\Delta p/p \sim 0.5$ -1 % ★ $\sim 4\pi$ acceptance ★ Best suited for multiparticle final states ★ Bremsstrahlung Photon Tagger ($\Delta E_{\gamma}/E_{\gamma} \sim 10^{-3}$)



Search for pentaquarks in $\gamma p \rightarrow \Theta + \overline{K}^0$ in high statistics experiments at CLAS – M. Battaglieri – INFN Genova

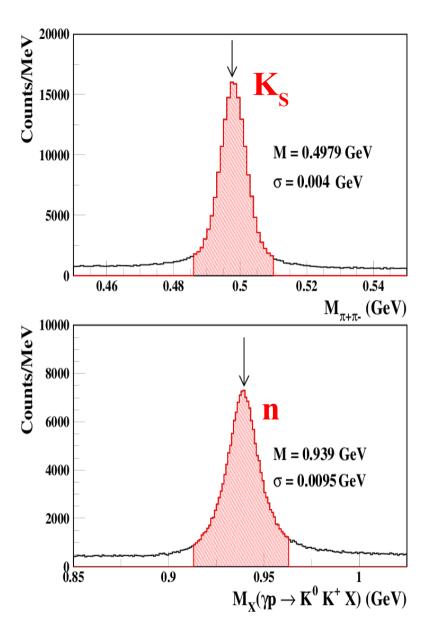
New Equipment For High Luminosity Run

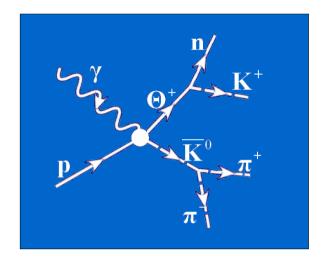
New Start Counter for Vertex Time Reconstruction


New Target

- Extended 40 cm cell
- 40mm radius
- tapered shape to reduce bubbles
- modified beam-pipe

New Start Counter

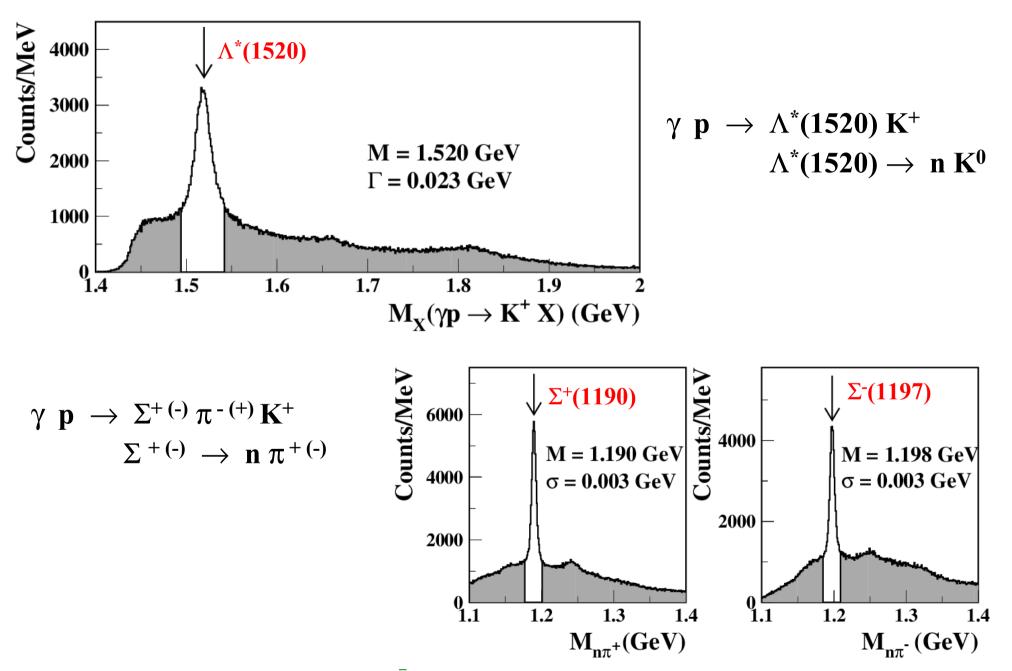

- Extended target cell coverage (40 cm)
- 2mm thick scintillator + light guide
- Higher azimuthal segmentation (4 x 6)
- Time resolution < 1ns (<300 ps in rec)


g11 data quality

Search for pentaquarks in $\gamma \ p \rightarrow \ \Theta + \overline{K}{}^0$ in high statistics experiments at CLAS – M. Battaglieri – INFN Genova

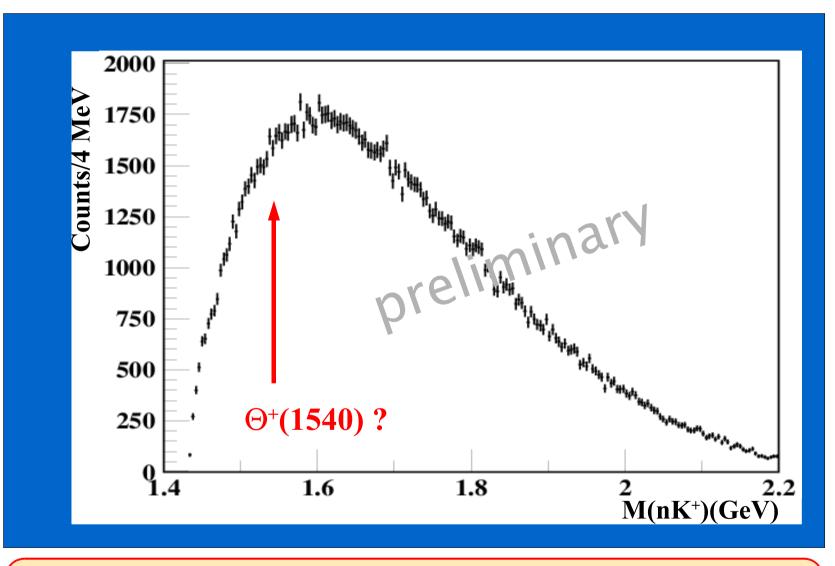
The reaction $\gamma \ \mathbf{p} \rightarrow \overline{\mathbf{K}}{}^{0} \Theta^{+} \rightarrow \pi^{+} \pi^{-} \ \mathbf{K}^{+} (\mathbf{n})$

***** the K⁰ is detected via its K_s component decaying into $\pi^+ \pi^-$


★ final state is identified using the missing mass technique

***** strangeness is tagged detecting the K⁺

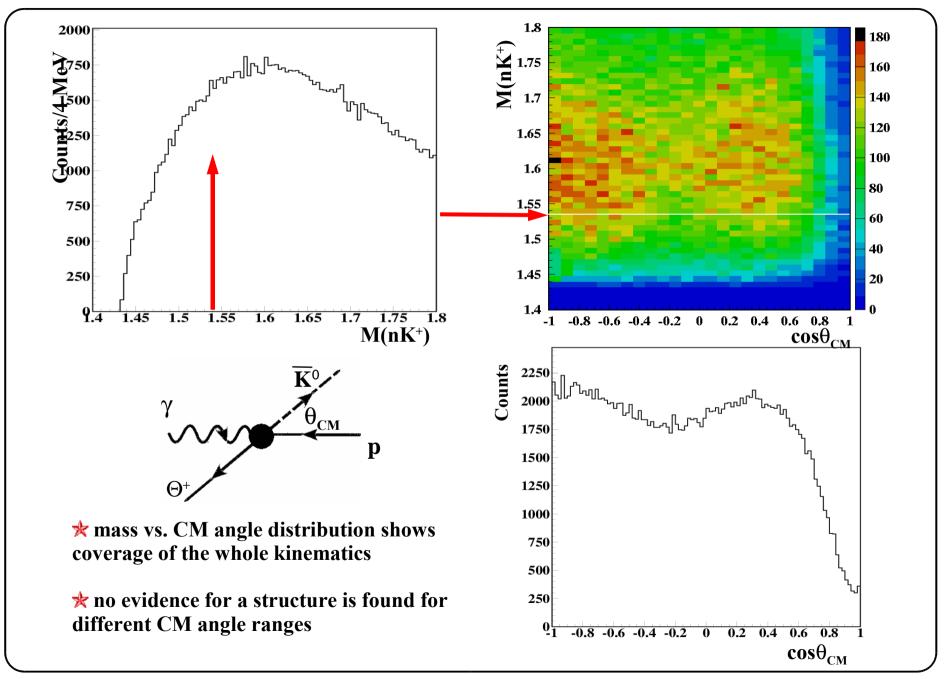
★ using the full statistics (70 pb⁻¹) a total of ~350K events are selected


<u>The reaction $\gamma_{-} \mathbf{p} \rightarrow \mathbf{K}^{0} \Theta^{+} \rightarrow \pi^{+} \pi^{-} \mathbf{K}^{+} (\mathbf{n})$ </u>

***** Background of known hyperons decayingin the same final state is rejected

Search for pentaquarks in $\gamma \ p \to \Theta^+ \overline{K}{}^0$ in high statistics experiments at CLAS – M. Battaglieri – INFN Genova

nK⁺ Mass Spectrum



• the nK⁺ mass spectrum is smooth

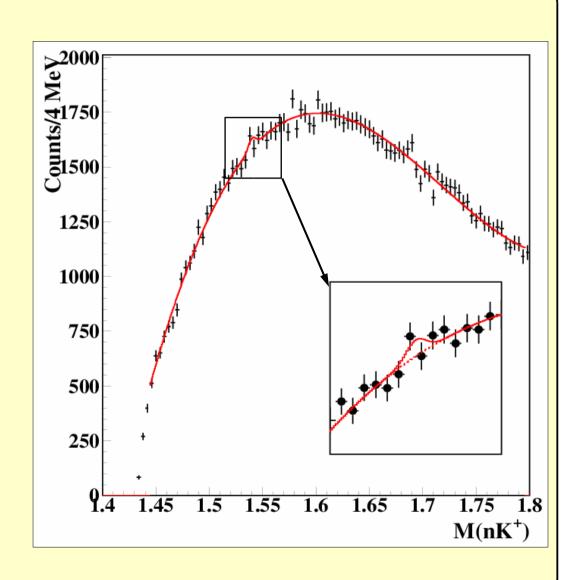
• no structure is observed at a mass of ~1540 MeV

Search for pentaquarks in $\gamma \ p \rightarrow \ \Theta + \overline{K}{}^0$ in high statistics experiments at CLAS – M. Battaglieri – INFN Genova

nK⁺ Mass Spectrum

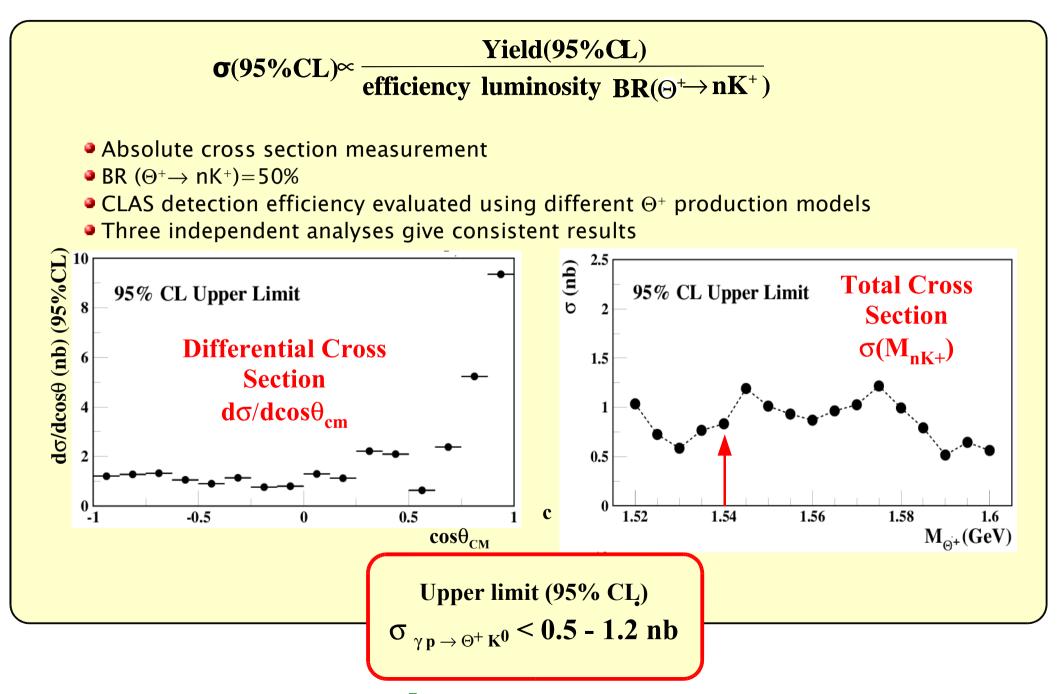
Search for pentaquarks in $\gamma p \rightarrow \Theta + \overline{K}^0$ in high statistics experiments at CLAS – M. Battaglieri – INFN Genova

Evaluation of an Upper Limit on the Θ^+ Yield


Θ⁺ is searched for as narrow resonance
 over a smooth background in the (nK⁺)
 spectrum (integrated and in angular bins)

Resonance width inferred from MC simulations, assuming a negligible intrinsic width

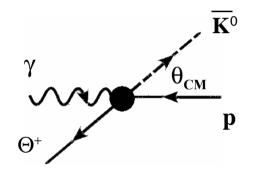
 Signal and background yields extracted fitting: binned/unbinned spectra including/excluding Θ⁺ mass region


M(nK⁺) range (1520 - 1600 MeV) scanned in 5 MeV steps

• Upper limit derived using Feldman and Cousins approach

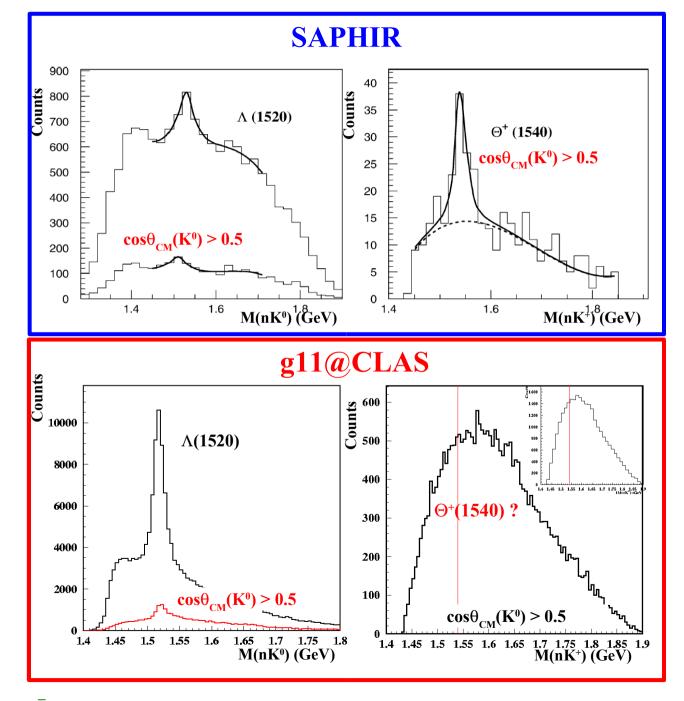
<u>The reaction $\gamma p \rightarrow K^0 \Theta^+ \rightarrow \pi^+ \pi^- K^+(n)$ </u>

Upper Limit on the $\gamma \ p \rightarrow \Theta^+ \overline{K^0}$ Cross Section



Search for pentaquarks in $\gamma \, p \to \, \Theta + \overline{K}{}^0$ in high statistics experiments at CLAS – M. Battaglieri – INFN Genova

Comparison with SAPHIR results


Kinematics

 Selection of forward angles of the K⁰ in the γ–p center of mass

Energy limited to 2.6 GeV

no hyperon rejection

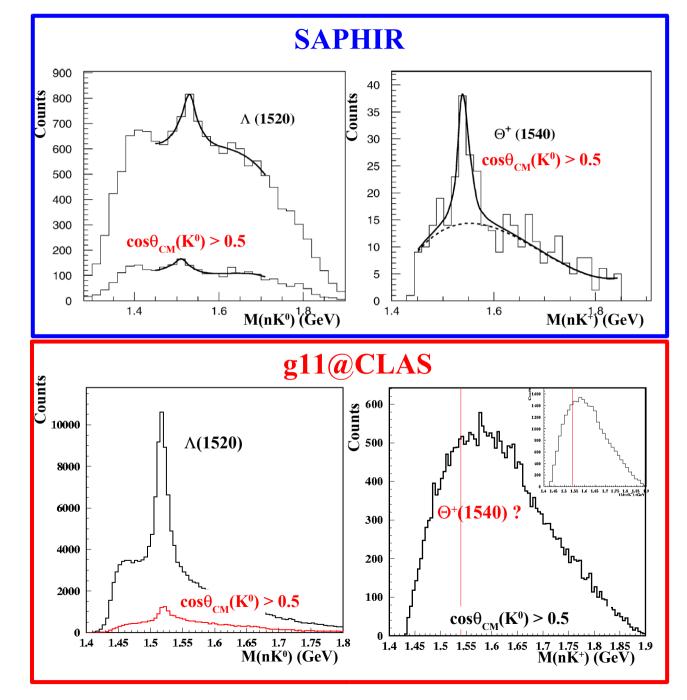
Comparison with SAPHIR results

Observed Yields

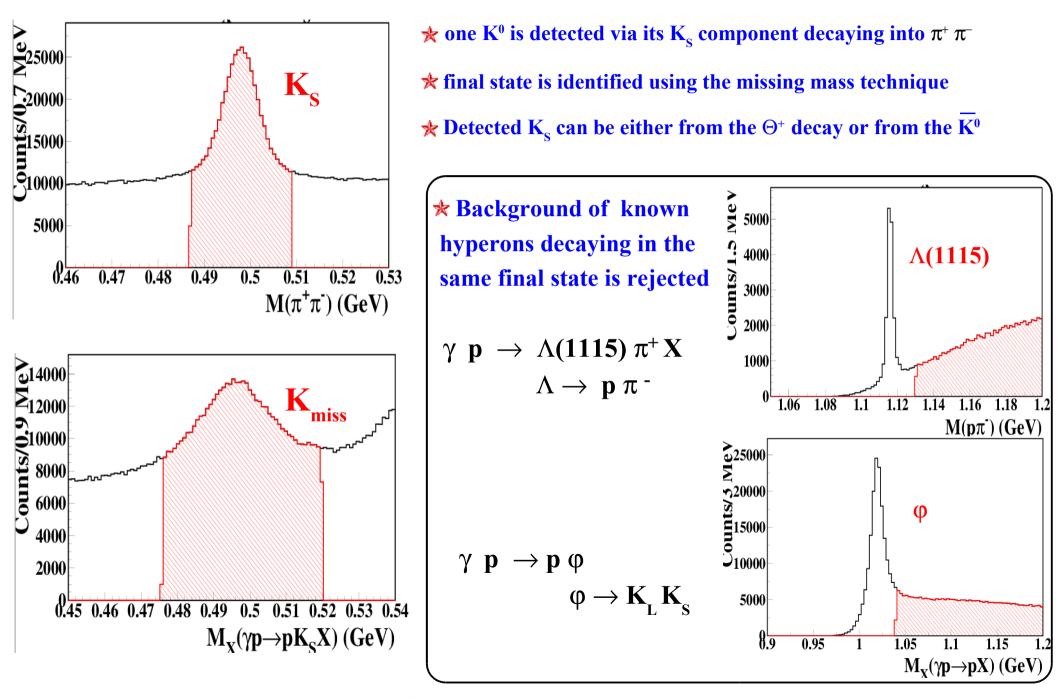
SAPHIR

 $N(\Theta^+)/N(\Lambda^*) \sim 63/630 \sim 10\%$

CLAS

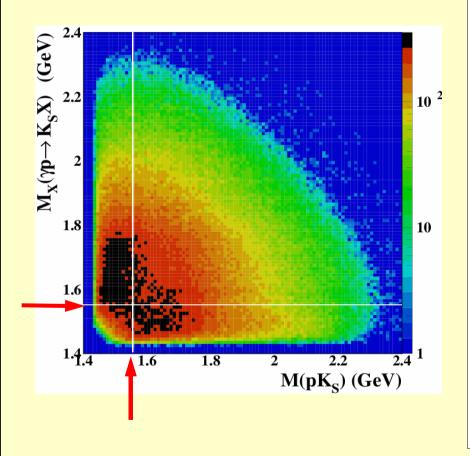

N(Θ⁺)/N(Λ^{*}) <100/53000 <0.2% (95%CL)

Cross Sections

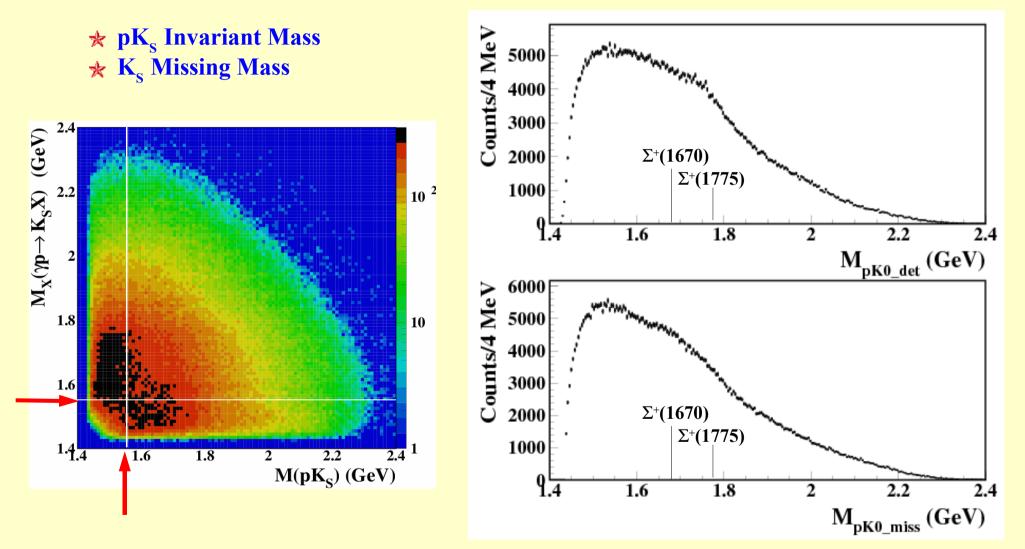

SAPHIR

 $\sigma_{\gamma \, p \, \rightarrow \, \Theta^{+} \, K^{0}} \sim 300 \, \, nb \\ reanalysis \, 50 \, \, nb$

 $\begin{array}{c} \textbf{CLAS} \\ \sigma_{\gamma\,p\,\rightarrow\,\Theta^{+}\,K^{0}} < 0.8 \ \textbf{nb} \end{array}$



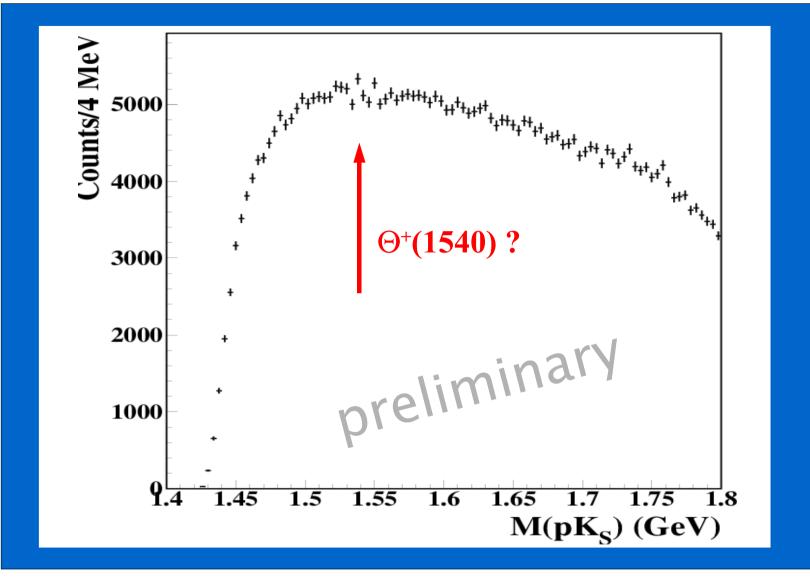
The reaction $\gamma \ \mathbf{p} \to \overline{\mathbf{K}}{}^{\mathbf{0}} \Theta^{+} \to \pi^{+} \pi^{-} \mathbf{p} (\mathbf{K}{}^{\mathbf{0}})$



Θ^+ should show up in <u>measured</u> and <u>missing</u> K⁰ spectra

★ pK_s Invariant Mass
 ★ K_s Missing Mass

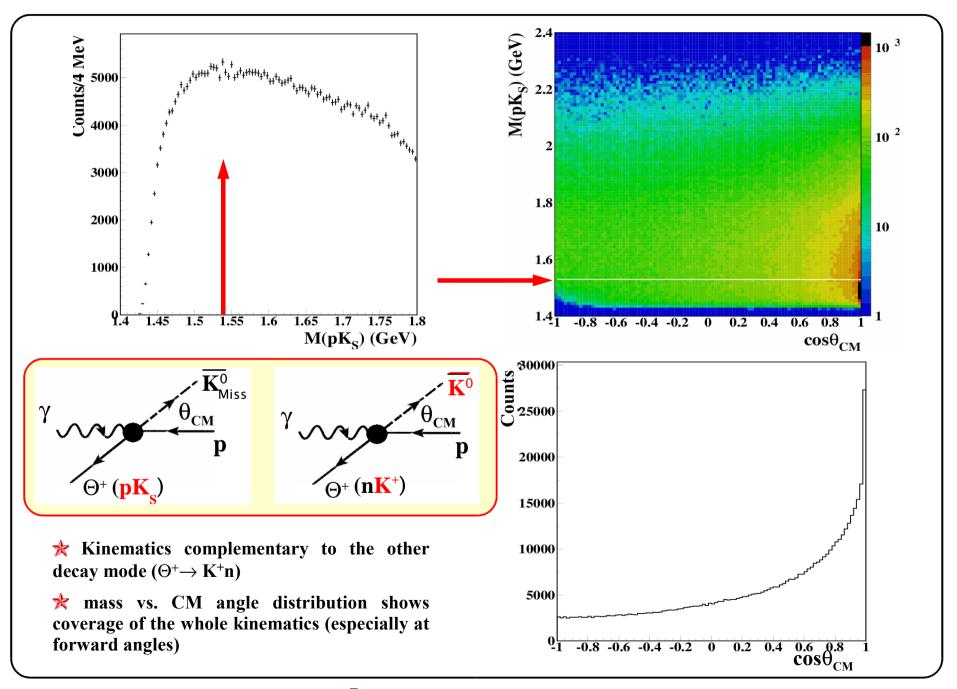
$\Theta^{\scriptscriptstyle +}$ should show up in <u>measured</u> and <u>missing</u> K⁰ spectra



• Events corresponding to the two projections can be considered almost independent and combined together doubling the statistics

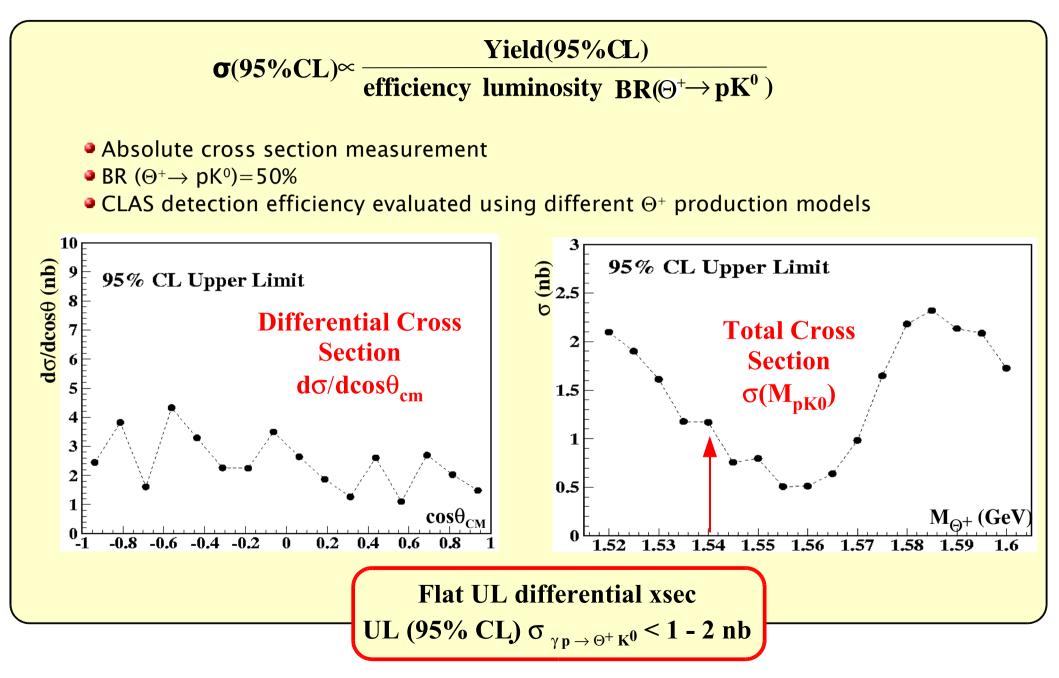
• We only show upper limits derived from pK_s Invariant mass spectrum

<u>The reaction $\gamma \ p \rightarrow \overline{K}^0 \ \Theta^+ \rightarrow \pi^+ \ \pi^- p \ (K^0)$ </u>


pKs Mass Spectrum

the pK_s mass spectrum is smooth
no structure is observed at a mass of ~1540 MeV

Search for pentaquarks in $\gamma p \rightarrow \Theta + \overline{K}^0$ in high statistics experiments at CLAS – M. Battaglieri – INFN Genova


pKs Mass Spectrum

Search for pentaquarks in $\gamma p \rightarrow \Theta + \overline{K}^0$ in high statistics experiments at CLAS – M. Battaglieri – INFN Genova

<u>The reaction $\gamma p \rightarrow \overline{K}^0 \Theta^+ \rightarrow \pi^+ \pi^- p (K^0)$ </u>

Upper Limit on the $\gamma \ p \rightarrow \Theta^+ \overline{K}{}^0$ Cross Section

Upper limit on Γ_{Θ^+} from CLAS Results

S.Stepanian - V.Burkert

Theoretical cross section are for $\Gamma_{\Theta^{+}}\text{=}1~\text{MeV}$

Reaction	Jπ			Experimental width	$\sigma \propto \Gamma$	
	1/2 ⁻	1/2+	3/2 ⁻	3/2+	Γ_{Θ^+}	<u>g11</u>
$\gamma p \to \overline{K}^0 \Theta^+$	0.01nb	0.22nb			<3.6 MeV	(σ ^{γρ} <0.8 nb
$\gamma n \to K^- \Theta^+$	0.2nb	1nb	55nb	10nb	< 4 MeV	$\sigma^{\gamma n} < 4nb$
$\gamma p \rightarrow \overline{K}^0 \Theta^+$		(2.7)nb	8nb	(1)nb	<0.3 MeV	
$\gamma n \to K^- \Theta^+$		2.7nb	200nb	25nb	< 1.7 MeV	
$\gamma p \to \overline{K}^0 \Theta^+$	~0.4nb	~1.6(100)nb			<0.5 MeV	
$\gamma n \to K^- \Theta^+$	~1.7nb	~8.7(75)nb			< 0.5 MeV	
$\gamma p \to \overline{K}^0 \Theta^+$		15(30)nb			<0.05 MeV	
$\gamma n \to K^- \Theta^+$		15(30)nb			< 0.25 MeV	
$\gamma p \to \overline{K}^0 \Theta^+$	2nb	5.2(~10)nb	15.4nb	1.8nb	<0.15 MeV	
$\gamma n \rightarrow K^- \Theta^+$	3.5nb	11.2(~20)nb	48nb	4.nb	< 0.4 MeV	
	$\gamma p \to \overline{K}^0 \Theta^+$ $\gamma n \to \overline{K}^0 \Theta^+$ $\gamma p \to \overline{K}^0 \Theta^+$ $\gamma n \to \overline{K}^0 \Theta^+$ $\gamma p \to \overline{K}^0 \Theta^+$	$1/2^ \gamma p \rightarrow \overline{K}^0 \Theta^+$ 0.01nb $\gamma n \rightarrow \overline{K}^- \Theta^+$ 0.2nb $\gamma p \rightarrow \overline{K}^0 \Theta^+$ $\gamma n \rightarrow \overline{K}^- \Theta^+$ $\gamma p \rightarrow \overline{K}^0 \Theta^+$ ~0.4nb $\gamma n \rightarrow \overline{K}^- \Theta^+$ ~1.7nb $\gamma p \rightarrow \overline{K}^0 \Theta^+$ $\gamma n \rightarrow \overline{K}^- \Theta^+$ $\gamma p \rightarrow \overline{K}^0 \Theta^+$ $\gamma n \rightarrow \overline{K}^- \Theta^+$	$1/2^ 1/2^+$ $\gamma p \rightarrow \overline{K}^0 \Theta^+$ 0.01nb 0.22nb $\gamma n \rightarrow K^- \Theta^+$ 0.2nb 1nb $\gamma p \rightarrow \overline{K}^0 \Theta^+$ 0.2nb 1nb $\gamma p \rightarrow \overline{K}^0 \Theta^+$ 2.7nb 2.7nb $\gamma p \rightarrow \overline{K}^0 \Theta^+$ ~0.4nb ~1.6(100)nb $\gamma p \rightarrow \overline{K}^0 \Theta^+$ ~1.7nb ~8.7(75)nb $\gamma p \rightarrow \overline{K}^0 \Theta^+$ 15(30)nb 15(30)nb $\gamma p \rightarrow \overline{K}^0 \Theta^+$ 2nb 5.2(~10)nb	1/2 ⁻ 1/2 ⁺ 3/2 ⁻ $\gamma p \rightarrow \overline{K}^0 \Theta^+$ 0.01nb 0.22nb $\gamma n \rightarrow K^- \Theta^+$ 0.2nb 1nb 55nb $\gamma p \rightarrow \overline{K}^0 \Theta^+$ 0.2nb 1nb 200nb $\gamma p \rightarrow \overline{K}^0 \Theta^+$ ~0.4nb ~1.6(100)nb 200nb $\gamma p \rightarrow \overline{K}^0 \Theta^+$ ~0.4nb ~1.6(100)nb	$1/2^{-}$ $1/2^{+}$ $3/2^{-}$ $3/2^{+}$ $\gamma p \rightarrow \overline{K}^{0} \Theta^{+}$ 0.01nb 0.22nb $\gamma n \rightarrow K^{-} \Theta^{+}$ 0.2nb 1nb 55nb 10nb $\gamma p \rightarrow \overline{K}^{0} \Theta^{+}$ 0.2nb 1nb 55nb 10nb $\gamma p \rightarrow \overline{K}^{0} \Theta^{+}$ 0.2nb 1nb 55nb 10nb $\gamma p \rightarrow \overline{K}^{0} \Theta^{+}$ 0.2nb 2.7nb 8nb (1)nb $\gamma p \rightarrow \overline{K}^{0} \Theta^{+}$ ~0.4nb ~1.6(100)nb 200nb 25nb $\gamma p \rightarrow \overline{K}^{0} \Theta^{+}$ ~1.7nb ~8.7(75)nb $\gamma p \rightarrow \overline{K}^{0} \Theta^{+}$ 15(30)nb 1.5(30)nb $\gamma p \rightarrow \overline{K}^{0} \Theta^{+}$ 2nb 5.2(~10)nb 15.4nb 1.8nb	Reaction J^{π} width 1/2 1/2 ⁺ 3/2 ⁻ 3/2 ⁺ Γ_{Θ^+} $\gamma p \to \overline{K}^0 \Theta^+$ 0.01nb 0.22nb 1 <3.6 MeV

() – with K* exchange

Conclusions

***** Negative results casted doubts about the existence of the widely observed narrow state (<20MeV) with Strangeness +1 (Θ^+ pentaquark)

* Direct comparison of different experiments is difficult

* Need new generation of dedicated experiments in the same kinematic of positive results with: **High statistics**

High precision

g11@JLab

***** JLab (CLAS) has a comprehensive physics program to search for evidence of pentaquark states in photon induced reactions

***** The photoproduction on proton (g11 experiment) ran in May-July 2004 accumulating a total integrated luminosity of 70 pb⁻¹ in the photon energy range 1.6-3.8 GeV

* Preliminary results for the reactions $\gamma p \rightarrow \Theta^+ \overline{K}{}^0$ studied in both decay modes $(\Theta^+ \rightarrow nK^0 and$ $\Theta^+ \rightarrow pK^0$) show no indication of a narrow resonance

* An upper limit of 0.8 nb ($\Theta^+ \rightarrow nK^0$) and 1nb ($\Theta^+ \rightarrow pK^0$) on the total cross section were derived

* Due to the complementary kinematics of the two decay modes, the combined CLAS efficiency See Valery's is smooth and providing a flat upper limit on the differential cross section

***** Analysis of other reactions searching for the Θ^+ and Θ^{++} are in progress

A letter is ready to be submitted to PRL

Search for $\Theta^+(1540)$ pentaquark in high statistics measurement of $\gamma p \to \bar{K}^0 K^+ n$ at CLAS

M. Battaglieri,¹ R. DeVita,¹ V. Kubarovsky,² L. Guo,³ G.S. Mutchler,⁴ P. Stoler,² D.P. Weygand,³ P. Ambrozewicz,¹⁴ M. Anghinolfi,¹ G. Asryan,³⁸ H. Avakian,³ H. Bagdasaryan,³¹ N. Baillie,³⁷ J.P. Ball,⁵ N.A. Baltzell,³³ V. Batourine,²⁵ I. Bedlinskiy,²² M. Bellis,^{2,8} N. Benmouna,¹⁶ B.L. Berman,¹⁶ A.S. Biselli,⁸ S. Bouchigny,²⁰ S. Boiarinov,³ R. Bradford,⁸ D. Branford,¹³ W.J. Briscoe,¹⁶ W.K. Brooks,³ S. Bültmann,³¹ V.D. Burkert,³ C. Butuceanu,³⁷ J.R. Calarco,²⁸ S.L. Careccia,³¹ D.S. Carman,³⁰ S. Chen,¹⁵ E. Clinton,²⁶ P.L. Cole,¹⁸ P. Coltharp,¹⁵ D. Crabb,³⁶ H. Crannell,⁹ J.P. Cummings,² D. Dale,³⁹ E. De Sanctis,¹⁹ P.V. Degtyarenko,³ A. Deur,³ K.V. Dharmawardane,³¹ C. Djalali,³³ G.E. Dodge,³¹ J. Donnelly,¹⁷ D. Doughty,^{11,3} M. Dugger,⁵ O.P. Dzyubak,³³ H. Egiyan,^{3,*} K.S. Egiyan,³⁸ L. Elouadrhiri,³ P. Eugenio,¹⁵ G. Fedotov,²⁷ H. Funsten,³⁷ M.Y. Gabrielyan,³⁹ L. Gan,⁴⁰ M. Garcon,¹⁰ A. Gasparian,⁴¹ G. Gavalian,^{28,31} G.P. Gilfoyle,³² K.L. Giovanetti,²³ F.X. Girod,¹⁰ O. Glamazdin,²⁴ J.T. Goetz,⁶ A. Gonenc,¹⁴ C.I.O. Gordon,¹⁷ R.W. Gothe,³³ K.A. Griffioen,³⁷ M. Guidal,²⁰ N. Guler,³¹ V. Gyurjyan,³ C. Hadjidakis,²⁰ R.S. Hakobyan,⁹ J. Hardie,^{11, 3} F.W. Hersman,²⁸ K. Hicks,³⁰ I. Hleigawi,³⁰ M. Holtrop,²⁸ C.E. Hyde-Wright,³¹ Y. Ilieva,¹⁶ D.G. Ireland,¹⁷ B.S. Ishkhanov,²⁷ M.M. Ito,³ D. Jenkins,³⁵ H.S. Jo,²⁰ K. Joo,¹² H.G. Juengst,^{16,†} J.D. Kellie,¹⁷ M. Khandaker,²⁹ W. Kim,²⁵ A. Klein,³¹ F.J. Klein,⁹ A.V. Klimenko,³¹ M. Kossov,²² L.H. Kramer,^{14,3} J. Kuhn,⁸ S.E. Kuhn,³¹ S.V. Kuleshov,²² J. Lachniet,⁸ J.M. Laget,^{10,3} J. Langheinrich,³³ D. Lawrence,²⁶ T. Lee,²⁸ Ji Li,² K. Livingston,¹⁷ B. McKinnon,¹⁷ B.A. Mecking,³ J.J. Melone,¹⁷ M.D. Mestayer,³ C.A. Meyer,⁸ T. Mibe,³⁰ K. Mikhailov,²² R. Minehart,³⁶ M. Mirazita,¹⁹ R. Miskimen,²⁶ V. Mochalov,²¹ V. Mokeev,²⁷ L. Morand,¹⁰ S.A. Morrow,^{20,10} P. Nadel-Turonski,¹⁶ I. Nakagawa,⁴² R. Nasseripour,^{14,33} S. Niccolai,²⁰ G. Niculescu,²³ I. Niculescu,²³ B.B. Niczyporuk,³ R.A. Niyazov,³ M. Nozar,³ M. Osipenko,^{1,27} A.I. Ostrovidov,¹⁵ K. Park,²⁵ E. Pasyuk,⁵ C. Paterson,¹⁷ J. Pierce,³⁶ N. Pivnyuk,²² D. Pocanic,³⁶ O. Pogorelko,²² S. Pozdniakov,²² J.W. Price,^{6,7} Y. Prok,^{36,‡} D. Protopopescu,¹⁷ B.A. Raue,^{14,3} G. Riccardi,¹⁵ G. Ricco,¹ M. Ripani,¹ B.G. Ritchie,⁵ F. Ronchetti,¹⁹ G. Rosner,¹⁷ P. Rossi,¹⁹ F. Sabatié,¹⁰ C. Salgado,²⁹ J.P. Santoro,^{9,3} V. Sapunenko,³ R.A. Schumacher,⁸ V.S. Serov,²² Y.G. Sharabian,³ E.S. Smith,³ L.C. Smith,³⁶ D.I. Sober,⁹ A. Stavinsky,²² S.S. Stepanyan,²⁵ S. Stepanyan,³ B.E. Stokes,¹⁵ I.I. Strakovsky,¹⁶ S. Strauch,^{16,§} M. Taiuti,¹ D.J. Tedeschi,³³ A. Teymurazyan,³⁹ U. Thoma,^{3,¶} A. Tkabladze,¹⁶ S. Tkachenko,³¹ L. Todor,³² C. Tur,³³ M. Ungaro,^{2,12} M.F. Vineyard,³⁴ A.V. Vlassov,²² L.B. Weinstein,³¹ M. Williams,⁸ E. Wolin,³ M.H. Wood,^{33, **} A. Yegneswaran,³ L. Zana,²⁸ J. Zhang,³¹ and B. Zhao¹² (The CLAS Collaboration)

Check Arxiv next days!