Search for $\Phi(1860)$ in CLAS

Hawanes Egiyan
Uniwersity of Neu Hampshire
for CLAS Col/aboration

Outline of the Talk

- Physics Overview
- Objective of this experiment
- CLAS Data
-Summary

I ntroduction

* A number of experimental results suggest existence of $\Theta^{+}(1540)$ pentaquark state.
- Models predicted such a state as a part of pentaquark antidecuplet.
- 3 predicted states have predicted exotic quantum numbers.
* NA49 collaboration reported an observation of $\Xi_{5}(1860)$ ($\Phi(1860)$) states which they identified with two I=3/2 states of antidecuplet.
- Other experiments failed to confirm NA49 result.

Status of $\Phi(1860)$ Search

Experiment	Initial state	Ξ^{-}	$\Xi(1530)$	$\Phi(1860)^{--}$
NA49	pp	$\mathrm{e}^{+} \mathrm{e}^{-}$	1640	150
ALEPH	$\mathrm{e}^{+} \mathrm{e}^{-}$	3450	322	<24
BaBar	pp	250000	24000	<133
CDF	μ^{+}A	35722	2182	<63
COMPASS	pp	18000	1700	<79
E690	$\gamma \mathrm{p}$	512850	70000	<200
FOCUS	pA	800000	59391	<170
HERA-B	$\mathrm{e}^{-} \mathrm{D}$	12000	1400	<56
HERMES	ep	450	35	<5
WA89	676000	60000	<760	
ZEUS	1561	192	<56	

Ageev et al, Eur. Phys. J C41 (2005)
Hovanes Egiyan, Pentaquark 2005

Photo-Production Diagram

Φ^{--}is composed of (ssddū) quarks

$\Phi(1860)$ Decays

	Primary decay	Secondary decay	Tertiary decay	Mass Constr.	$Q=0$	Br .
$\begin{aligned} & \mathscr{0} \\ & \underset{\sim}{0} \\ & \underset{\sim}{n} \end{aligned}$	$\phi^{--} \rightarrow \pi^{-\Xi^{-}}(0.5)$	$\rightarrow \pi^{-}\left(\pi^{-} \Lambda\right)$	$\rightarrow \pi^{-} \pi^{-}\left(\pi^{-} p\right)$	$\bar{\Xi}^{-}, \wedge$		0.32
	$\Phi^{--} \rightarrow K^{-} \sum$ (0.5)	$\rightarrow K\left(\pi^{-} n\right)$		Σ	n	0.5
	$\Phi^{-} \rightarrow \pi^{0} \bar{\Xi}^{-}(0.33)$	$\rightarrow \pi^{0}\left(\pi^{-} \Lambda\right)$	$\rightarrow \pi^{0} \pi^{-}\left(\pi^{-} p\right)$	Ξ^{-}, \wedge	π^{0}	0.21
	$\Phi^{-} \rightarrow \pi^{-} \Xi^{0}(0.17)$	$\rightarrow \pi^{-}\left(\pi^{0} \Lambda\right)$	$\rightarrow \pi^{-} \pi^{0}\left(\pi^{-} p\right)$	$\equiv 0, \wedge$	π^{0}	0.11
	$\Phi^{-} \rightarrow \bar{K}^{0} \Sigma^{-}(0.17)$	$\rightarrow\left(\pi^{-} \pi^{+}\right)\left(\pi^{-} n\right)$		$K_{s,} \Sigma^{-}$	n	0.06
	$\Phi^{-} \rightarrow K^{-} \Sigma^{0}(0.33)$	$\rightarrow K^{-}(\gamma \Lambda)$	$\rightarrow K^{-} \gamma\left(\pi^{-} p\right)$	Σ^{0}, Λ	γ	0.21
$\begin{aligned} & \text { 늘 } \\ & \underset{x}{x} \end{aligned}$	$\Phi^{0} \rightarrow \pi^{0} \Xi^{0}(0.33)$	$\rightarrow \pi^{0}\left(\pi^{0} \Lambda\right)$	$\rightarrow \pi^{0} \pi^{0}\left(\pi^{-} p\right)$	\pm, Λ	$2 \pi^{0}$	0.21
	$\phi^{0} \rightarrow \pi^{+}$三- $^{-}(0.17)$	$\rightarrow \pi^{+}\left(\pi^{-} \Lambda\right)$	$\rightarrow \pi^{+} \pi^{-}\left(\pi^{-} p\right)$	$\equiv 0, \Lambda$		0.11
	$\Phi^{0} \rightarrow K^{-} \Sigma^{+}(0.17)$	$\rightarrow K^{-}\left(\pi^{+} n\right)$		Σ^{+}	n	0.09
	$\Phi^{0} \rightarrow \bar{K}^{0} \Sigma^{0}(0.33)$	$\rightarrow\left(\pi^{+} \pi^{-}\right)(\gamma \Lambda)$	$\rightarrow \pi^{+} \pi^{-} \gamma\left(\pi^{-} p\right)$	$K_{s}, \Sigma^{0}, \Lambda$	γ	0.07
	$\Phi^{+} \rightarrow \pi^{+} \equiv 0$ (0.5)	$\rightarrow \pi^{+}\left(\pi^{0} \Lambda\right)$	$\rightarrow \pi^{+} \pi^{0}\left(\pi^{-} p\right)$	\#,,\wedge	π^{0}	0.32
	$\Phi^{+} \rightarrow \pi^{+} \pi^{+}$三- $^{-}$(?)	$\rightarrow \pi^{+} \pi^{+}\left(\pi^{-} \Lambda\right)$	$\rightarrow \pi^{+} \pi^{+} \pi^{-}\left(\pi^{-} p\right)$	Ξ^{0}, Λ		?
	$\phi^{+} \rightarrow \bar{K}^{0} \Sigma^{+}(0.5)$	$\rightarrow\left(\pi^{+} \pi^{-}\right)\left(\pi^{+} n\right)$		K_{s}, Σ^{+}	n	0.09

Role of CLAS

- Look for $\Phi(1860)$ in photo- and electro-production on neutron.
- CLAS allows simultaneous detection of multiple particles in the final state. In particular, channel

$$
\begin{aligned}
& \gamma d \rightarrow\left(K^{+} K^{+} p_{s}\right) \quad \Phi^{--} \rightarrow \\
& \left(\boldsymbol{K}^{+} \boldsymbol{K}^{+} \boldsymbol{p}_{\boldsymbol{s}}\right) \boldsymbol{\pi}^{-} \boldsymbol{\Xi}^{-} \rightarrow \\
& \left(K^{+} K^{+} \boldsymbol{p}_{s}\right) \pi^{-} \pi^{-} \Lambda \rightarrow \\
& \left(K^{+} K^{+} p_{s}\right) \pi^{-} \pi^{-} \pi^{-} p
\end{aligned}
$$

can be studied wit CLAS.

- Directly reconstruct the Φ^{--}as a $\mathrm{p} \pi^{-} \pi^{-} \pi^{-}$system instead of using missing mass technique.
- Expected $\sim 45 \Phi^{--}$events/nb in 40 days run.

Schematic of the Reaction

Production vertex and two decay vertices.
$\Xi^{-} \mathbf{C} \tau=4.9 \mathrm{~cm}$
$\Lambda \mathbf{c} \tau=7.9 \mathrm{~cm}$ detached vertices
can be very helpful

EG3 Run Conditions

- Use CEBAF 5.7 GeV initial electron beam.
- Secondary tagged photon beam within a tagging range from $4.5-5.5 \mathrm{GeV}$ at $\sim 2 \times 10^{7} \mathrm{sec}^{-1}$ tagged γ-rate.
- 40-cm long deuterium target achieving integrated luminosity of $\sim 100 \mathrm{pb}^{-1}$ for active tagging range.
- Reversed magnetic field polarity to improve the acceptance for the negative tracks .
- Use 3-tracks trigger as the main trigger. Prescaled 2-track trigger.
- Collected total of 4 billion triggers (2 track +3 track) in 40 calendar days.

Sample Event in CLAS

20 - Oct - 2005
Hovanes Egiyan, Pentaquark 2005

PID in CLAS

- Momentum determined from tracking in drift chambers.
- Timing determined from TOF system.
- Proton-pion separation is easy for $\mathrm{P}<2.5 \mathrm{GeV}$
- K^{+}and K^{-}identification for $\mathrm{P}<1.5 \mathrm{GeV}$.

Kinennetical aowereo

- Acceptance for π - is very good, from 8° to 130° due to reversed magnetic field.
- Forward-going protons are bent inward into the CLAS beam pipe.
- Forward kinematical coverage for K^{-}will allow for $\Theta^{+}(1540)$ search in $\gamma \mathrm{d} \rightarrow \mathrm{K}^{-} \mathrm{p}^{+}{ }^{+}$channel in both $\Theta^{+} \rightarrow K^{+} n$ and $K^{0} p$ decay channels.

Reconstruction of Particles

20 - Oct - 2005
Hovanes Egiyan, Pentaquark 2005

Summary

- EG3 run's primary goal is to search for $\Phi(1860)$ pentaquark seen in NA49.
- Used tagged photon beam on deuterium target.

The data taking was completed in Feb 2005, collected 4 billion triggers.

- Calibrations are nearly complete, data processing will start very soon.
- Need to developed a procedure for detached vertex reconstruction to identify Ξ^{-}(1321) and $\Phi^{-(1860)}$.
- The data can be used for $\Theta^{+}(1540)$ search as well.
- Stay tuned for the results.

The End

Kinematical Coverage

