

On the Existence of Heavy Pentaquarks: The large N_c and the Heavy Quark Limits and Beyond

Paul M. Hohler T.D. Cohen, and R.F. Lebed

Introduction

- We want to determine if pentaquarks could exist in the real world.
- We have beautiful model-independent result that in the combined heavy quark, large N_c limits, pentaquarks must exist. (See T.D.Cohen's talk)
- Question: How close is the real world to this limit?
- Can't solve QCD, therefore we must consider some model with "realistic" parameters (one pion exchange potential).

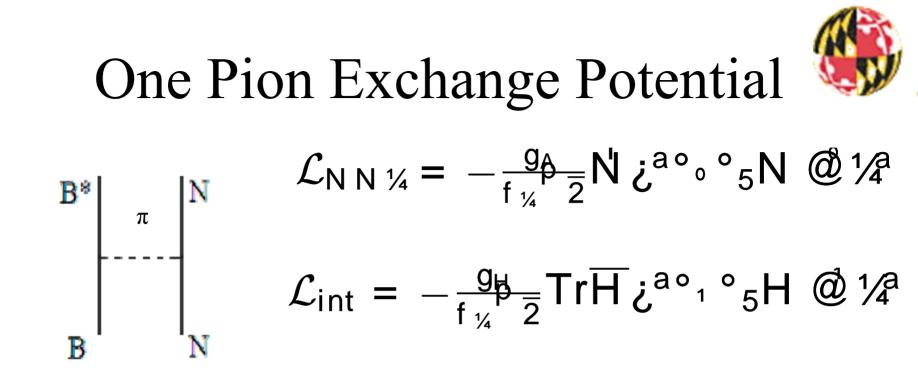
– In combine limit, (attractive) OPEP must bind

• We found that the real world is not near this limit for the case of pentaquarks.

Heavy Pentaquarks

- Consider pentaquarks with c or b antiquarks
- With very large mass \rightarrow heavy quark symmetry arises
 - Spin of heavy quark is irrelevant
 - Mass degeneracy between D(B) and $D^*(B^*)$
- Combine vector and pseudoscalar into an H-field

$$\mathbf{H} \equiv \frac{(1+\neq)}{2} [\mathbf{P}_{1}^{\mathbf{x} \circ 1} - \mathbf{P}_{5}^{\circ}]$$


Large N_c and Heavy Quark Limits

- Heavy Pentaquarks not only can exist, but must exist! (see talk by T. D. Cohen)
- Emergent symmetry $SU(4) \times O(8) \times SU(2)$
- Any potential with a region of attraction guarantees the existence (in the limit)!
- Is the real world close enough to this limit, so that this qualitative result holds?

Therefore...

- Can we cook up a realistic potential with some attractive region?
- Of course, the One Pion Exchange Potential (OPEP)
- Thus if a OPEP, with realistic parameters, binds a pentaquark, irrespective of the short distance physics, then pentaquarks must exist in the real world!

 $V_{\frac{1}{4}}(\kappa) = (|I^2 - I_N^2 - I_H^2|)[S_{12}V_T(r) + (K^2 - S_N^2 - S_I^2)V_c(r)]$

 $V_{c}(r) = \frac{g_{A} g_{H}}{2\frac{1}{4} f_{\frac{1}{4}}^{2}} \frac{e^{i r}}{3r} \qquad V_{T}(r) = \frac{g_{A} g_{H}}{2\frac{1}{4} f_{\frac{1}{4}}^{2}} \frac{e^{i r}}{6r} \frac{1}{r^{2}} \frac{3}{r^{2}} + \frac{3}{r} + 1^{\psi}$

Short Distance Physics

- The OPEP was $cutoff \sim 1 fm$
- Short distance physics modeled as either constant or quadratic
- Some parameters were determined by fitting to a form which for nucleons yields correct deuterium binding (to make sure potential wasn't too stupid)
- Varied depth, width, and coupling constant to determine robustness of results

B/N Bound State Results

	Cha	nne	ΙI		A	В			(D		
	JS	Ρ		+	_	+	_		+	_	+	_
Γ	$\frac{1}{2}$ $\frac{1}{2}$	_	6	1.30	1.35	3.89	1.92, 3.62	1	39.38, 142.14	_	14.49,16.01	15.46, 16.15
			1	_	_	0.35	0.27		_	139.38, 140.76	15.32,15.60	15.04, 15.46
	$\frac{1}{2}$ $\frac{1}{2}$	-	0	_	_	_	_		14.9, 32.39	4,19.32,46.5	_	_
			1	_	_	—		12.	2, 18.22, 26.91	9.45		
	$\frac{1}{2}$ $\frac{3}{2}$	-	0	1.30	1.31	3.89	3.67		140.76	140.76	15.87	15.32
			1	_	_	_	0.26		140.76	140.76	15.04	15.32
	$\frac{1}{2} \frac{3}{2}$	+	0	_					32.15	3.35 45.95		_
			1	_	_	_	_		12.12, 27.19	8.36, 22.08	_	_
	$\frac{3}{2}$ $\frac{1}{2}$	-	0	1.42	1.31	3.89	3.67		140.76	140.76	15.87	15.32
			1	—	_	_	0.26		140.76	140.76	15.04	15.32
	$\frac{3}{2} \frac{1}{2}$	+	0	_	_	_	_	15.	2, 18.49, 32.43	4.65	_	_
		_ \	1	_	_	_	_		12.80	$17.25,\ 17.66,\ 22.91$	_	_
Γ	$\frac{3}{2} \frac{3}{2}$	_	0	1.42	1.25	3.89	3.67		140.76	140.76	15.87	15.32
			1	_	_	_	0.20		140.76	140.76	15.04	15.32
Γ	$\frac{3}{2}$ $\frac{3}{2}$	+	0	—	_	_	- /		18.22, 32.29	_	_	_
			1		_	_	_/		4.18, 23.18	_	_	_

- Column A: constant potential $V_0 = -62.79$ MeV and $r_0 = 1$ fm
- Column B: quadratic potential
- Column C: constant potential $V_0 = -276$ MeV and $r_0 = 1$ fm
- Column D: constant potential $V_0 = -62.79$ MeV and $r_0 = 1.5$ fm

D/N Bound State Results

\mathbf{C}	han	nel	Ι		A	I	3
J	\mathbf{S}	Р		+	_	+	_
$\frac{1}{2}$	$\frac{1}{2}$	_	0	113.99,110.4	_	7.36, 9.00	8.45, 9.27
			1	_	114.82, 115.78	8.40, 8.79	8.16, 8.63
$\frac{1}{2}$	$\frac{1}{2}$	+	0	2.91	16	_	_
			1	_	_	_	_
$\frac{1}{2}$	$\frac{3}{2}$	_	0	117.3	116.2	9.00	8.45
			1	115.23	115.23	8.45	8.45
$\frac{1}{2}$	$\frac{3}{2}$	$^+$	0	2.10	15.87	_	_
			1	_	_	_	_
$\frac{3}{2}$	$\frac{1}{2}$	_	0	117.3	116.20	9.00	8.45
			1	115.37	115.78	8.45	8.45
$\frac{3}{2}$	$\frac{1}{2}$	+	0	2.91	_	_	_
			1	_	_	_	_
$\frac{3}{2}$	$\frac{3}{2}$	_	0	117.3	116.20	9.00	8.45
			1	115.09	115.09	8.45	8.45
$\frac{3}{2}$	$\frac{3}{2}$	$^+$	0	2.53	_	_	_
			1	_	_	—	_

Column A: constant potential $V_0 = -276$ MeV and $r_0 = 1$ fm Column B: constant potential $V_0 = -62.79$ MeV and $r_0 = 1.5$ fm

Summary of Results

- When short distance physics (SDP) could bind deuterium, only states with negative parity could bind the B meson.
- Deeper and wider potentials supported more and stronger bound states.
- B mesons bound better than D mesons
- When the SDP was turned off, neither B nor D mesons bound

Short distance physics plays a crucial role in the existence of heavy pentaquarks!!

Conclusion

- Existence of heavy pentaquarks depends greatly on the short distance physics
- The real world is not near the combined large N_c and heavy quark limits
- More understanding of short distance physics is needed to deduce the existence of heavy pentaquarks

$$\begin{split} V_{\frac{1}{2}}(\varkappa) &= \begin{array}{c} \frac{\frac{1}{2}}{V_{1}(r) \text{ or } V_{2}(r)} \left[S_{12}V_{T}(r) + (K^{2} - S_{N}^{2} - S_{H}^{2})V_{c}(r) \right] & r > r_{0} \\ V_{1}(r) \text{ or } V_{2}(r) & r < r_{0} \\ V_{c}(r) &= \begin{array}{c} \frac{g_{A}g_{H}}{2\frac{1}{2}}\frac{e^{i}}{r_{0}}\frac{m_{\frac{1}{2}}r}{3r}m_{\frac{1}{2}}^{2} \\ V_{T}(r) &= \begin{array}{c} \frac{g_{A}g_{H}}{2\frac{1}{2}}\frac{e^{i}}{r_{0}}\frac{m_{\frac{1}{2}}r}{6r} \frac{\mu}{m_{\frac{1}{2}}r^{2}} + \frac{3}{m_{\frac{1}{2}}r^{2}} + 1 m_{\frac{1}{2}}^{2} \\ V_{1}(r) &= V_{0}\left(V_{0} = -62:79 \text{ MeV or } -276 \text{ MeV}\right) \\ V_{2}(r) &= -252:659 \frac{MeV}{fm^{2}}r^{2} + 541:321 \frac{MeV}{fm}r - 309:822 \text{ MeV} \end{split}$$

(1)

Motivation

- Let's consider the binding of a heavy meson and a nucleon
- Any attractive potential between these will yield bound pentaquarks
- At large distances, there must be a one pion exchange potential (OPEP) which is attractive.
- So if a OPEP with realistic parameters binds a pentaquark irrespective of the short distance physics, then pentaquark must exist in the real world!!

B Meson Results

Channel		Ι	А		В		()	D		
J	S	Ρ		+	—	+	—	+	—	+	_
$\frac{1}{2}$	$\frac{1}{2}$	_	0	1.30	1.35	3.89	1.92, 3.62	139.38, 142.14	{	14.49, 16.01	15.46, 16.15
-	-		1	{	{	0.35	0.27	{	139.38, 140.76	15.32, 15.60	15.04, 15.46
$\frac{1}{2}$	$\frac{1}{2}$	+	0	{	{	{	{	14.9, 32.39	4, 19.32, 46.5	{	{
	_		1	{	{	{	{	12.72, 18.22, 26.91	9.45	{	{
$\frac{1}{2}$	$\frac{3}{2}$	—	0	1.30	1.31	3.89	3.67	140.76	140.76	15.87	15.32
	_		1	{	{	{	0.26	140.76	140.76	15.04	15.32
$\frac{1}{2}$	$\frac{3}{2}$	+	0	{	{	{	{	32.15	3.35, 45.95	{	{
	_		1	{	{	{	{	12.12, 27.19	8.36, 22.08	{	{
$\frac{3}{2}$	$\frac{1}{2}$	—	0	1.42	1.31	3.89	3.67	140.76	140.76	15.87	15.32
	_		1	{	{	{	0.26	140.76	140.76	15.04	15.32
$\frac{3}{2}$	$\frac{1}{2}$	+	0	{	{	{	{	15.32, 18.49, 32.43	4.65	{	{
			1	{	{	{	{	12.80	17.25, 17.66, 22.91	{	{
$\frac{3}{2}$	$\frac{3}{2}$	—	0	1.42	1.25	3.89	3.67	140.76	140.76	15.87	15.32
			1	{	{	{	0.20	140.76	140.76	15.04	15.32
$\frac{3}{2}$	$\frac{3}{2}$	+	0	{	{	{	{	18.22, 32.29	{	{	{
	·		1	{	{	{	{	4.18, 23.18	{	{	{

- Column A: constant potential $V_0 = -62.79$ MeV and $r_0 = 1$ fm
- Column B: quadratic potential
- Column C: constant potential $V_0 = -276$ MeV and $r_0 = 1$ fm
- Column D: constant potential $V_0 = -62.79$ MeV and $r_0 = 1.5$ fm

D Meson Results

С	hanr	nel			В		
J	S	Ρ		+	—	+	_
$\frac{1}{2}$	$\frac{1}{2}$	_	0	113.99, 110.4	{	7.36, 9.00	8.45, 9.27
-	-		1	{	114.82, 115.78	8.40, 8.79	8.16, 8.63
$\frac{1}{2}$	$\frac{1}{2}$	+	0	2.91	16	{	{
-	-		1	{	{	{	{
$\frac{1}{2}$	$\frac{3}{2}$	_	0	117.3	116.2	9.00	8.45
_	-		1	115.23	115.23	8.45	8.45
$\frac{1}{2}$	$\frac{3}{2}$	+	0	2.10	15.87	{	{
-	-		1	{	{	{	{
$\frac{3}{2}$	$\frac{1}{2}$		0	117.3	116.20	9.00	8.45
_			1	115.37	115.78	8.45	8.45
$\frac{3}{2}$	$\frac{1}{2}$	+	0	2.91	{	{	{
-	-		1	{	{	{	{
$\frac{3}{2}$	$\frac{3}{2}$	_	0	117.3	116.20	9.00	8.45
_			1	115.09	115.09	8.45	8.45
$\frac{3}{2}$	$\frac{3}{2}$	+	0	2.53	{	{	{
-	-		1	{	{	{	{

Column A: constant potential $V_0 = -276$ MeV and $r_0 = 1$ fm Column B: constant potential $V_0 = -62.79$ MeV and $r_0 = 1.5$ fm

Example of Results I

• Consider the state J=1/2, S=1/2, P=+1, I=0

• Consider the potential with constant inner region and depth of -276 MeV and the coupling constants have same sign.

Bound states exist at14.9 MeV and 32.39 MeV below threshold.

Example of Results II

• Consider the state J=1/2, S=1/2, P=+1, I=0

• Consider the potential with constant inner region and depth of -62.79 MeV and the coupling constants have same sign.

No Bound State exists!!