# Structure and reactions of $\Theta^+$

#### Atsushi Hosaka (RCNP, Osaka Univ)

hep-ph/0507105
E. Hiyama, Kamimura, Yahiro, A.H., and Toki
hep-ph/0505134, hep-ph/0503149 to appear PRD S.I. *N*am, A. *H*osaka and H.-Ch. *K*im

# Outline

1. Full 5-body calculation

### 2. Photoproduction reconsidered

*pn* asymmetry when J = 3/2

 $\gamma n \rightarrow K^- \Theta^+ \text{ vs. } \gamma p \rightarrow K^0 \Theta^+ \quad [\Theta^+ \text{ or } \Lambda(1520)]$ K\* production

# **1. Full 5-body calculation**

Hiyama-Kamimura-Yahiro-Hosaka-Toki

hep-ph/0507105

### Need to handle the (at least) 5-body system

- So far calculations were only approximate and only for bound state
- Better method with scattering states included

#### Method available developed in nuclear-physics

#### Assumption: NRQM

- Validity of the use of the Schrodinger picture
- What is the effective hamiltonian

e.g. *const* is not known => *confinement*?

#### Clarify what this hamiltonian tells for 5-body system Then improve this method or choose others?

### **Decay** (fall-apart) is very sensitive to WFs

Hadronic (color-singlet) or colored correlations?

**SU(3)** qqq or qqbar are enough to make color singlets



### **Dependence** on $J^P$

 $J^{P} = 1/2^{-}$ : l = 0 (ground state) ~ KN scattering => can not be narrow Excited or complicated state may be a narrow res.

 $J^P = 1/2^+$ : l = 1(3/2<sup>+</sup>) Depends much on the configuration

$$J^{P} = 3/2^{-}: l = 0$$
  
D-wave KN decay is forbidden, can be narrow  
Seems consistent with phenomenology  
=> Hyodo, PRD, hep-ph/0509104  
hys.Rev.D71:054017,2005, hep-ph/0502093

Method Most serious calculation for 5-body system with scattering states included Gaussian expansion method



Oct 20-22, 2005

2

1

r<sub>1</sub>

Pentaquark05 at J-Lab

C=3

C=2

C=5

# Hamiltonian

#### NR quark model of Isgur-Karl

$$\begin{split} H &= \sum_{i} \left( m_{i} + \frac{\mathbf{p}_{i}^{2}}{2m_{i}} \right) - T_{G} + V_{\text{Conf}} + V_{\text{CM}} \\ V_{\text{Conf}} &= -\sum_{i < j} \sum_{\alpha=1}^{8} \frac{\lambda_{i}^{\alpha}}{2} \frac{\lambda_{j}^{\alpha}}{2} \left[ \frac{k}{2} \left( \mathbf{x}_{i} - \mathbf{x}_{j} \right)^{2} + v_{0} \right] \\ V_{\text{CM}} &= \sum_{i < i} \sum_{\alpha=1}^{8} \frac{\lambda_{i}^{\alpha}}{2} \frac{\lambda_{j}^{\alpha}}{2} \frac{\xi_{\sigma}}{m_{i}m_{j}} e^{-(\mathbf{x}_{i} - \mathbf{x}_{j})^{2}/\beta^{2}} \sigma_{i} \cdot \sigma_{j} \end{split}$$

## Good for conventional baryons

| :         |                  | —<br>Ma | Mass Magnetic moments |        |        | Charge radii      |            |
|-----------|------------------|---------|-----------------------|--------|--------|-------------------|------------|
|           |                  | Cal.    | Exp.                  | Cal.   | Exp.   | Cal.              | Exp.       |
|           |                  | (MeV)   |                       | (nm)   |        | $(\mathrm{fm}^2)$ |            |
|           | p                | 939     | 939                   | 2.7737 | 2.7828 | $(0.60)^2$        | $(0.87)^2$ |
|           | $\boldsymbol{n}$ | 939     | 939                   | -1.826 | -1.913 | -0.04             | -0.12      |
|           | Λ                | 1058    | 1115                  | -0.602 | -0.613 | -0.01             | _          |
|           | $\Sigma^+$       | 1119    | 1189                  | 2.691  | 2.458  | 0.35              | _          |
|           | $\Sigma^{0}$     | 1119    | 1192                  | 0.819  | _      | 0.03              | _          |
|           | $\Sigma^{-}$     | 1119    | 1197                  | -1.054 | -1.160 | -0.30             | _          |
|           | $\Xi^0$          | 1309    | 1314                  | -1.414 | -1.250 | -0.01             | _          |
|           | $\Xi^-$          | 1309    | 1321                  | -0.507 | -0.651 | -0.28             | _          |
|           | $\Delta^Q$       | 1232    | 1232                  | 2.843Q | _      | 0.41Q             | _          |
|           | $\Sigma^{*+}$    | 1320    | 1384                  | 3.18   | _      | 0.64              | _          |
|           | $\Sigma^{*0}$    | 1320    | 1384                  | 0.33   | _      | 0.12              | _          |
|           | $\Sigma^{*-}$    | 1320    | 1384                  | -2.51  | _      | -0.38             | _          |
|           | $\Xi^{*0}$       | 1512    | 1533                  | 0.67   | _      | 0.03              | _          |
| Oct 20-22 | Ξ*-              | 1512    | 1533                  | -2.17  | _      | -0.35             | _          |
|           | Ω                | 1506    | 1672                  | -1.840 | -2.02  | -0.32             | _          |



# KN-phase shifts 1/2-



(0s)<sup>5</sup>: KN scattering state Likely to be 1s(0s)<sup>4</sup>

 $\Gamma < 1 \text{ MeV}$ 

The nature of the narrow resonance is interesting to analyze

### We have seen:

- 5-body calculation of the Isgur-Karl quark model Two states at ~500 MeV above the KN threshold Γ(1/2<sup>-</sup>) ~ Very narrow, <1 MeV Γ(1/2<sup>+</sup>) ~ 100 MeV When the same *const*-parameter is used as for conventional baryons
- The ground (0s)<sup>5</sup> configuration melts into the continuum
- The 1/2<sup>+</sup> state is dominated by *qqq-qq* configuration

# 2. Photoproductions

1. K-production

2. K\*-production

## (1) **K-production** with new J-Lab data $\gamma p \rightarrow n K^+ K^0$



QuickTimeý Dz TIFFÅILZWÅj êLí£EvĔçÉOÉâÉÄ ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽÇ…ÇŐïKóvÇ-Ç ÅB

Teken from DeVita's talk at spring APS meeting

#### This is serious, but leads immediately to the absence of $\Theta^+$ ?

Oct 20-22, 2005

Pentaquark05 at J-Lab

### *Effective Lagrangian approach* hep-ph/0505134 *Nam-H*osaka-*K*im



# Before the $\Theta$ -production

 $\gamma n \rightarrow K^{-} \Lambda(1520)$  and  $\gamma p \rightarrow K^{0} \Lambda(1520)$ was studied and large **pn** asymmetry was found

Nam-Hosaka-Kim, hep-ph/0503149 to appear PRD



# Comparison

| Form factor             | $F_1$                                           |                                                  |  |  |
|-------------------------|-------------------------------------------------|--------------------------------------------------|--|--|
| Reactions               | $\underline{\gamma p}  ightarrow K^+ \Lambda^*$ | $\underline{\gamma n} \rightarrow K^0 \Lambda^*$ |  |  |
| σ                       | $\sim 900nb$                                    | $\sim 30nb$                                      |  |  |
| $d\sigma/d(\cos\theta)$ | Forward peak                                    | Peak at $\sim 45^\circ$                          |  |  |
| $d\sigma/dt$            | $\operatorname{Good}$                           | No data                                          |  |  |

The presence (for p) or absence (for n) contact term is important

#### LEPS data seems to support this result

#### Theta production, $J^P = 3/2^-$



 $J^{P} = 1/2^{+}$ 



The role of the contact term is more important for  $J^P = 3/2^-$  than  $1/2^+$ 

### **Predictions**

| $J^P$                         | 3/2                | +                 | 3/2                 | —                    | $1/2^+$           |                   |
|-------------------------------|--------------------|-------------------|---------------------|----------------------|-------------------|-------------------|
| $g_{KN\Theta}$                | 0.5                | 3                 | 4.2                 | 2                    | 1.0               |                   |
| $g_{K^*N\Theta}$              | $\pm 0.$           | 91                | $\pm 2$             | 2                    | $\pm 1.73$        |                   |
| Target                        | n                  | p                 | n                   | p                    | n                 | p                 |
| $\sigma$                      | $\sim 25~{\rm nb}$ | $\sim 1~{\rm nb}$ | $\sim 200~{\rm nb}$ | $\sim 4~\mathrm{nb}$ | $\sim 1~{\rm nb}$ | $\sim 1~{\rm nb}$ |
| $\frac{d\sigma}{d\cos\theta}$ | Forward            | $\sim 60^{\circ}$ | Forward             | —                    | $\sim 45^{\circ}$ | $\sim 45^{\circ}$ |

• We see a large asymmetry between pn targets

• Cross section for proton ~ few nb is consistent with the upper limit estimated by CLAS

# Different exp. config.



### Angular dist. in lab frame



### Special kinematics



# (2) $K^*$ (1<sup>-</sup>) production

 Physics in the t-channel Now κ (0<sup>-</sup>) is allowed to be exchanged



**Exotic tetraquark**  $\kappa$  may couple strongly to  $\Theta^+$ D.P. Roy, J. Phys. G30, R113 (2004)

• Using polarizations of  $\gamma$  and K\*, we can distinguish the exchanged particles

# Polarizations as a particle filter

Pol. of  $\gamma$  perp. to react. plane



If parallel [//], only  $\kappa$  is exchanged If perpendifular [ $\perp$ ], only K is exchanged

### Summary

• 5-body calc.

1/2<sup>-</sup> E ~ 2 GeV,  $\Gamma$  ~ 1 MeV 1/2<sup>+</sup> E ~ 2 GeV,  $\Gamma$  ~ 100 MeV Configurations mix

(cf: quark model calc. Hosaka-Oka-Shinozaki hep-ph/0409102, PRD71: 074021 (2005))

#### • Photoproduction, revised

\*There is a large *pn asymmetry*, especially for J = 3/2
\*No signal from the CLAS does not lead immediately to the absence of Θ<sup>+</sup>
\**Kinematics* at LEPS is very interesting
\**K*\* can be used as a *particle (t-channel) filter*

### **Interpretation of results**

