

Further study of narrow baryon resonance decaying into pK_{s}^{0} in pA-interactions at 70 GeV/c with SVD-2 setup

P.Ermolov¹, A.Kubarovsky¹, V. Popov¹, I.Rufanov², V. Volkov¹ and A.Vorobiev³

> ¹ SINP MSU, Moscow ² JINR, Dubna ³ IHEP, Protvino

(on behalf of SVD Collaboration)

Presented by Mikhail Kubantsev (ITEP and Northwestern University)

SVD-2 detector

In a development from an older SVD experiment, as a bubble chamber was replaced by a microstrip silicon vertex detector and Cerenkov and gamma detectors were installed. First physics run was in April 2002

SVD-2 detector schematic view

 High precision microstrip vertex detector (see next slide).
 Active target with Si, C and Pb planes

2. Multiwire proportional chambers.

 Magnet (1.18 T over 3 m region).
 Multicell threshold Cherenkov counter.

5. Gamma detector.

SVD-2 target / tracking detector

SVD-2 trigger

Level I:
Using energy depositions in 5•8 *Si* active target strips
Basic principle is to look for the >2...3 MIPs depositions in consecutive planes
Decision time: 220 ns
"Non-usable" events contamination: < 10%. Easily rejected: poor/non-reconstructed primary vertex

Level II:Was not implemented at April 2002 run

SVD-2 physics program

Current projects:

- Measurement of the total charm production cross-sections on Si, C and Pb nuclear targets and study of the cross-section A-dependence.
- Measurement of the differential x_F and p_t spectra and study of the leading effect for the charm mesons and baryons.
- Investigation of the possible influence of the "intrinsic charm" in the proton on the inclusive charm spectra.
- Searches for new non-exotic strange baryons and exotic strange baryons (pentaquarks).

SVD-2 run I (April '2002)

Proton beam 70 GeV/c from IHEP Protvino **U-70** accelerator Intensity $5-6 \times 10^5$ 1/cycle (1.2 sec) Total target thickness ~ 0.5% hadronic interaction length 400...600 events/cycle registered 50,000,000 events recorded

Experimental resolutions (with a vertex detector)

X,Y-resolutions for tracks fitted: 7...10 μm
 Z-resolution:

primary vertex: 70... 130 μm

secondary vertex: 200... 300 μm

Impact parameter resolution: $\sim 14 \ \mu m$

Momentum resolution for the 5 GeV tracks is 1%
 Effective mass resolution:

■ K⁰ 3.8 MeV

▲ Λ 1.4 MeV

Primary vertex Z-coordinate in SVD-2 active target

Si – 300μm; Pb – 220 μm; C – 500 μm

SVD result of 02'2004

A by-product of D-mesons search: using neutral particle candidates decaying before silicon tracking planes (5-35 mm region).

Number of events within a peak: 50 over background of 78.

Mass: 1526 ± 3(stat.) ± 3(syst.) MeV/c²

Width $\Gamma < 24 \text{ MeV/c}^2$

New data analyses

Analysis I : better reconstruction algorithms for the same 0.5-35 mm region as in `2004 paper

Analysis II : using spectrometer data to search for the particles decaying *after* the tracking detector.

Analyses starting points: K0 candidates. Point of decay selections

Analysis I : decay region Z = 0.5-35 mm

Analysis I initial selection

events with a number of charged tracks up to 7 selected
 ~30,000 "short" K⁰ candidate events found

Protons are identified as no hits in TCC (P<21 GeV) + any positive track outside TCC aperture</p>

Analysis I : pK⁰_s

205 events over the background of 1050 Mass = $1522.2\pm3\pm3$ MeV $\sigma_{peak} \sim 12$ MeV

Significance: $\frac{S}{\sqrt{B}} = 6.3\sigma$ $\frac{S}{\sqrt{S+B}} = 5.8\sigma$ $\frac{S}{\sqrt{S+2B}} = 4.2\sigma$

Proton energy and # of tracks cuts

After the cuts:
118 events over the
background of 162
σ_{peak} ~ 8 MeV

Pentaquark 2005 October 20-22, Jefferson Lab, Newport News, Virginia, USA

Significance:

$$\frac{S}{\sqrt{B}} = 9.2\sigma$$
$$\frac{S}{\sqrt{S+B}} = 7.2\sigma$$
$$\frac{S}{\sqrt{S+2B}} = 5.6\sigma$$

Applying track quality cuts to estimate Γ

 K^0 vertex reconstruction: distance of the closest approach < 3σ

Tracks have >=12 hits in spectrometer

50 signal events over 25 of background

Γ<14 MeV at 95% c.l.

Analysis II: starting point

Only spectrometer wire chamber information is used for the secondary tracks reconstruction

Effective mass resolution:
 K⁰
 6.1 MeV
 Λ
 2.4 MeV

Well-established resonances

Particle	Deca y mode	Exp. Mass	PDG mass	Exp. FWHM	PDG Г	Res. estim.
φ ⁰ (1020)	K+K-	1019.6	1019.4	5.7	4.5	1.5
Λ*(1520)	K⁻p	1 520.4	1519.5	16.5	15.6	2.3
K*(892)	K ⁰ π+	891.6	891.7	58	51	12
Σ ⁺ (1385)	$\Lambda^0\pi^+$	1380.4	1382.8	43	36	10

Analysis II: Events selection

6 or less primary charged tracks
K⁰ -- not Λ! Cutting off good Λ candidates
Protons selected as:

- a positive particle with 8 GeV GeV
- number of hits >= 12 (in 18 chambers)
- no Cerenkov hit (not a pion)

Analysis II: K⁰p effective mass

187 events over the background of 940 Mass = $1522.8\pm3\pm3$ MeV $\sigma_{peak} \sim 12$ MeV

Peak significance:

$$\frac{S}{\sqrt{B}} = 6.1\sigma$$
$$\frac{S}{\sqrt{S+B}} = 5.6\sigma$$
$$\frac{S}{\sqrt{S+2B}} = 4.1\sigma$$

Monte-Carlo simulation

p-Si interactions simulated in the RQMD model to include nuclear effects + GEANT 3.21

- The same analysis cuts
- No peaks in the pK⁰_s spectrum
- nK⁰_s spectrum shows A(1520) signal

SVD-2 result

- The inclusive reaction *pA* → *pK⁰_s+X* with a 70 GeV proton beam of IHEP accelerator are studied
 Two different statistically independent samples of candidates are analyzed
 - A narrow peak with a mass $M=1523 \pm 2(\text{stat.}) \pm 3(\text{syst})$ MeV/c^2 is observed, with 392 of signal over 1990 of background events in two analyzes combined
 - Statistical significance is

 $\frac{S}{\sqrt{B}} = 8.6\sigma \qquad \frac{S}{\sqrt{S+B}} = 8\sigma \qquad \frac{S}{\sqrt{S+2B}} = 5.9\sigma$

Preliminary cross-section estimation is σ·Br(θ⁺→pK⁰) ~ 6 µb (still needs detailed Monte Carlo study).

Work in progress!

Notes about SELEX Hyperon Experiment

- 600 GeV hyperon Beam at Fermilab: mostly Σbeam
- 1. Very good space and momentum resolution due to silicon strip detectors and wire chambers
- 2. Good particle ID: RICH counter
- 3. Study of charmed baryon and meson states
- 4. Observation some new states (double Charm, Ds(2640))
- 5. How about hunt for pentaquarks?

 Note about SELEX Hyperon Experiment 0+ search Mode 0 → pKo(ds) (K^{*}, arc detected) is used for search (no means to detect neutrons), however:
 Huge background from beam fragmentation:
 ∑ → K⁰ (ds)+X - it produce wrong strangeness for 0⁺ were K⁰ (ds) is a decay particle (still the same K0s are detected)

Comparing with 70 GeV beam with 600 GeV beam multiplicity is higher by ~2, so combinatorics background is higher by ~4. It is already known that O⁺ production cross section is not significantly rising with energy.
 So in spite great efforts to produce result SELEX collaboration can not give any meaningful answer about existence of the O⁺ Penaquark 2005 October 20-22, Jefferson Lab, Newport News, Virginia, USA

Notes about SELEX Hyperon Experiment O⁺ search vs SVD-2 • no big background from K⁰ from beam fragmentation overall multiplicity is lower other backgrounds can be lower cross section in detector acceptance is higher and the reference process of $\Lambda^*(1520)$ production

Pentaquark in fragmentation

$\sigma(\mathbf{P}+\mathbf{N} \rightarrow \mathbf{\Theta}^{+}+\mathbf{X}) / \sigma(\Sigma^{-} + \mathbf{N} \rightarrow \mathbf{\Theta}^{+}+\mathbf{X}) > 1$

$\Lambda^*(1520)$ in fragmentation

Pentaquark 2005 October 20-22, Jefferson Lab, Newport News , Virginia, USA

 $+N \rightarrow \Theta^+ +$

SVD-2 vs SPHYNX: a statement from Alex Kubarovski:

"About SPHINX: the basic SPHINX idea is to look for exotics in the deep fragmentation area $X_f > 0.8$.

I'm myself coauthor of some SPHINX papers: always quasiexclusive reactions are investigated, where exotics may born (for example there is a claim for X(2000) pentaquark).

So I don't think it is possible to compare results - it is completely different experiments, though at the same energy."