Search for @++ with CLAS

Valery Kubarovsky

Rensselaer Polytechnic Institute Jefferson Laboratory For the CLAS Collaboration

Θ⁺ Isospin

Antidecuplet predicts I=0
In 27-plet I=1
In some models Θ⁺ is isotensor (to suppress the strong decays)
The question is what is the isospin of the Θ⁺ (if real)?

Search for Θ^{++}

- SAPHIR, CLAS, HERMES, ZEUS ... did not find signal in the pK+ invariant mass spectra
- STAR found strong evidence (4.2σ) for the Θ^{++} in d+Au collisions with M=1528 MeV
- The mass coincidence with the previously reported Θ⁺ results suggests that the isotopic spin of the Θ⁺ baryon is not zero

STAR:

a Θ^{++} pentaquark?

d+Au Collisions

Search for Pentaquarks at Jlab

A comprehensive program to search for pentaquarks with high statistics and high resolution photoproduction experiments is in progress at Jefferson Lab

g10	deuteron	E _γ ~ 1.0-3.5 GeV	completed in 2004
Hall-A	Search for Θ^{++} , Σ°		completed in 2004
	Search for Θ^+		planned for 2007
g11	proton	E _γ ~ 1.6–3.8 GeV	completed in 2004
eg3	deuteron	E _γ ~ 4.0–5.4 GeV	completed in 2005
Super-g	proton	E _γ ~ 3.8 – 5.7 Ge\	/ planned for 2006/7

g11 experiment at Jlab

- High statistics and high resolution photoproduction experiment dedicated to search for pentaquarks.
- Maximum photon energy up to 3.8 GeV
- 6.9 10⁹ events collected with 70 pb⁻¹ integrated luminosity

Reaction

Two main topologies

- All three particles detected by CLAS
- Only p and K⁺ detected and K⁻ reconstructed as missing particle

• The last method has an order of magnitude Pentaguark05 Jlab higher acceptance and full angular coverage

Missing Mass Spectra proton, K⁺ and K⁻ are detected

 $\gamma p \rightarrow K^- K^+ p$

Very clean sample No mis particle ID

Valery Kubarovsky RPI/Jlab

Missing mass spectrum Only proton and K⁺ detected

$$\gamma p \to (K^-)K^+p$$

•K⁻ identified as a missing particle

•An order of magnitude larger acceptance

•Full angular coverage, no holes!

Pentaquark05 Jlab

Valery Kubarovsky RPI/Jlab

 $\rightarrow K^- K^+ p$ 10⁵ Λ (1520)

 $\gamma p \rightarrow (K^-)K^+p$

10⁶ Λ(1520)

Cut ϕ and $\Lambda(1520)$ for the Θ^{++} search

pK+ Invariant mass spetra for different angles

All three particles detected

Side-band subtraction

pK⁺ Invariant Mass Spectrum

Pentaquark05 Jlab

M(pK+)

pK+ Invariant Mass Spetra for different angles

Only Proton and K+ detected

Θ⁺⁺ Cross Section Upper Limit

• $\sigma^{95\%}$ based on the reference reaction

$\gamma p \rightarrow K^+ \Lambda(1520)$

Feldman-Cousins method for the estimation of the upper limit of the Θ⁺⁺ yield

95% CL Upper Limit

$$\sigma_{\Theta^{++}}^{95\%} = \sigma(\Lambda 1520) \frac{Yield_{\Theta^{++}}^{95\%}}{N_{\Lambda 1520}} \frac{\varepsilon_{\Theta^{++}}}{\varepsilon_{\Lambda 1520}} \frac{BR(\Lambda \to pK^{-})}{BR(\Theta^{++} \to pK^{+})}$$

pK⁺ AND pK⁻ MASS SPECTRA

Pentaquark05 Jlab

Upper Limit on Total Cross Section (95% CL)

Pentaquark05 Jlab

Upper limit on the differential cross section (95% CL)

Simulated(!) 1 nb @++ signal

Pentaquark05 Jlab

Θ++/Λ(1520) Ratio

The upper limit on the ratio of the photoproduction cross sections of Θ⁺⁺ and Λ(1520) from proton @ 95% CL

$$\frac{\Theta^{++}}{\Lambda(1520)} < 2.5 \cdot 10^{-4}$$

Valery Kubarovsky RPI/Jlab

Theoretical estimation of the Θ^{++} total cross section

Regge model cross section $\Gamma_{\Theta^+}=1$ MeV , $J^P=1/2^+$

In the threshold region Regge model predicts the photoproduction cross section from neutron:

$$\sigma(\gamma n \to K^- \theta^+) = 1nb$$

It gives

$$\sigma(\gamma p \to K^- \theta^{++}) = 2 \, nb$$

Total cross section and width

Total cross section is proportional to the particle width.

$$\sigma \approx \Gamma_{\Theta}$$

$$\Gamma = \frac{\sigma(nb)}{2} MeV$$

Valery Kubarovsky RPI/Jlab

Upper limit on the Θ^{++} width (95% CL)

Total Θ⁺⁺ cross section upper limit at 95% CL is

• Upper Limit on the Θ^{++} width is

Valery Kubarovsky RPI/Jlab

What do we know about the Θ^+ width?

Widths seen in experimental analyses are dominated by resolution effects. More precise information is obtained in analyses with theoretical constraints.

DIANA, Phys. Atom. Nucl. 66,1715,(2003) HERMES, PLB585, 213 (2004) S. Nussinov et al., hep-ph/0307357 R. Arndt et al., PRC68, 42201 (2003) R. Cahn and G. Trilling, PRD69, 11401(2004) A. Sibirtsev, et al., hep-ph/0405099 (2004) W. Gibbs, nucl-th/0405024 (2004)

$$\begin{split} & \Gamma_{\Theta} < 9 \text{ MeV} \\ & \Gamma_{\Theta} = 17 \text{+/-9} \text{+/-3 MeV} \\ & \Gamma_{\Theta} < 6 \text{ MeV} & (\text{non-observation}) \\ & \Gamma_{\Theta} < 1 \text{ MeV} & (\text{non-observation}) \\ & \Gamma_{\Theta} = 0.9 \text{+/-} 0.3 \text{MeV} & (\text{from DIANA results}) \\ & \Gamma_{\Theta} < 1 \text{ MeV} & (\text{K}^{+}\text{d} - \text{K}^{\circ}\text{pp}) \\ & \Gamma_{\Theta} = 0.9 \text{+/-} 0.2 \text{ MeV} & (\text{K}^{+}\text{d} - \text{X}) \end{split}$$

Is the Θ^+ isosinglet?

- g11 upper limit on the Θ⁺⁺ width (Γ<75 keV) and the photoproduction cross section (σ<0.15 nb) would make the existence of such state highly unlikely
- Suppose that the Θ⁺ width is of the order of 1 MeV that we would expect that Θ⁺⁺ to be of the order of 1 MeV. Our result is incompatible with such a hypothesis.
- We conclude that either the Θ⁺ has a remarkably small width or it must be isosinglet.

STAR – CLAS comparison

STAR: $\frac{\Theta^{++}}{\Lambda(1520)} = 0.4\%$

CLAS:

Pentaquark05 Jlab

$\Lambda(1520)$ and Θ^{++} Production Mechanisms

Conclusion

- The reaction γp→K⁻K⁺p was studied at Jlab with photon energy 1.6-3.8 GeV to search for Θ⁺⁺ state in the pK⁺ decay mode
- No statistically significant evidence of Θ⁺⁺ was found
- An upper limit σ<0.15 nb and Γ<75 keV (model dependent) at 95%CL were obtained for M=1.52-1.60 GeV
- $R = \Theta^{++}/\Lambda(1520) < 0.025\% @95\%$ CL
- These low limits suggest that if the Θ⁺ does exist it is isosinglet