The pentaquark searchs at LEPS

T. Nakano (RCNP, Osaka University)

•Search in $\gamma d \rightarrow K^+ K^- X$

- •Search in $\gamma d \rightarrow \Lambda(1520) X$
- •Search in $\gamma d \rightarrow \Lambda(1116) X$
- •Summary

1

Research Center for Nuclear Physics, Osaka University : T. Nakano, D.S. Ahn, M. Fujiwara, K. Horie, T. Hotta, K. Kino, H. Kohri, N. Muramatsu, T. Onuma, T. Sawada, A. Shimizu, M. Uchida, R.G.T. Zegers Department of Physics, Pusan National University : J.K. Ahn, J.Y. Park School of Physics, Seoul National University : H.C. Bhang, K.H. Tshoo Department of Physics, Konan University : H. Akimune Japan Atomic Energy Research Institute / SPring-8 : Y. Asano, A. Titov Institute of Physics, Academia Sinica : W.C. Chang, D.S. Oshuev, Japan Synchrotron Radiation Research Institute (JASRI) / SPring-8 : H. Ejiri, S. Date', N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Yorita Department of Physics and Astronomy, Ohio University : K. Hicks, T. Mibe Department of Physics, Kyoto University : K. Imai, H. Fujimura, T. Miwa, M. Miyabe, Y. Nakatsugawa, M. Niiyama, N. Saito, M. Yosoi Department of Physics, Chiba University : H. Kawai, T. Ooba, Y. Shiino Wakayama Medical University : S. Makino Department of Physics and Astrophysics, Nagoya University : S. Fukui Department of Physics, Yamagata University : T. Iwata Department of Physics, Osaka University : S. Ajimura, M. Nomachi, A. Sakaguchi, S. Shimizu, Y. Sugaya Department of Physics and Engineering Physics, University of Saskatchewan : C. Rangacharyulu Department of Physics, Tohoku University : M. Sumihama Laboratory of Nuclear Science, Tohoku University : T. Ishikawa, H. Shimizu Department of Applied Physics, Miyazaki University : T. Matsuda, Y. Toi Institute for Protein Research, Osaka University : M. Yoshimura National Defense Academy in Japan : T. Matsumura 2

Different exp. config.

By courtesy of Hosaka

LEPS spectrometer

Charged particle spectrometer with forward acceptance PID from momentum and time-of-flight measurements

Particle Identification

First evidence from LEPS $\gamma n \rightarrow K^{+}K^{-}n$

Events/(0.02 GeV/c²)

Low statistics:
$$\frac{S}{\sqrt{B}} = 4.6$$
 but $\frac{S}{\sqrt{S+B}} = 3.2$

Tight cut: 85% of events are rejected by the ϕ exclusion cut.

Unknown background: BG shape is not well understood. Events from a LH2 target were used to estimate it. Possible kinematical reflections.

Correction: Fermi motion correction is necessary.

Phys.Rev.Lett. 91 (2003) 012002

hep-ex/0301020

LEPS LD₂ runs

- Collected Data (LH₂ and LD₂ runs) Dec.2000 – June 2001 LH₂ 50 mm ~5×10¹² photons published data
 May 2002 – Apr 2003 LH₂ 150 mm ~1.4×10¹² photons Oct. 2002 – June 2003 LD₂ 150 mm ~2×10¹² photons
- #neutrons \times #photons in K⁺K⁻ detection mode LD₂ runs = 5mm-thick STC in short LH₂ runs \times ~5
- K⁻p detection mode w/o Fermi correction : $\gamma d \rightarrow \Theta^+ K^- p$

K-p mode will be intensively presented today.

Search for Θ^+ in $\gamma n \rightarrow K^+K^-n$

- •A proton is a spectator (undetected).
- Fermi motion is corrected to get the missing mass spectra.
- •Tight ϕ exclusion cut is essential.
- •Background is estimated by mixed events.

Θ^+ search in $\gamma d \rightarrow \Lambda(1520)$ KN reaction

 Θ^+ is identified by K⁻p missing mass from deuteron. \Rightarrow No Fermi correction is needed.

K⁻ n and pn final state interactions are suppressed.

If $s\overline{s}(I=0)$ component of a γ is dominant in the reaction, the final state KN has I=0. (Lipkin)

A possible reaction mechanism

- Θ^+ can be produced by re-scattering of K⁺.
- K momentum spectrum is soft for forward going $\Lambda(1520)$.

LEPS acceptance has little overlap with CLAS acceptance.
Exchanged kaon can be onshell.

Event selection

Background processes

- Quasi-free $\Lambda(1520)$ production must be the major background.
- The effect can be estimated from the LH2 data.

 The other background processes which do not have a strong pK⁻ invariant mass dependence can be removed by sideband subtraction.

Sideband subtraction to remove nonresonant background

0.4

-

1.50 < M(K⁻p) < 1.54 1.45 < M(K⁻p) < 1.50 or 1.54 < M(K⁻p) < 1.59

S =

13

Remove fluctuation by smearing $E\gamma$

•Fluctuations in the sideband spectra are removed by smearing $E\gamma$ with 10 MeV smearing (nearly equal to the resolution).

•E γ smeared spectrum gives χ^2 /n.d.f ~ 1 when compared with the original spectrum.

• ϕ contribution in the signal region is slightly larger than that in the the 14 sideband region. The underestimtion is corrected by using the MC simulation.

BG estimation with two independent sideband regions

•Validity of the sideband method with $E\gamma$ smearing was checked by using two independent regions of the sideband.

•Channel-to-channel comparison gives mean=-0.04 and RMS=2.0.

Estimate Λ^* contribution from LH₂ data

•Estimate quasi-free Λ^* contribution using LH2 data.

•Missing mass is calculated by assuming deuteron mass in the initial state.

•MC study shows the Fermi motion effect is small.

•Non-resonant and ϕ contributions are subtracted by sideband subtraction method.

•Small fluctuations in the large missing mass region (MM>1.55 GeV) could not be completely removed.

K⁻p missing mass spectrum

Normalization of Λ^* is obtained by fit in the region of MMd < 1.52 GeV.

Variation of M(pK⁻) gate width

Possible leakage of Λ^* in thesideband region

Background estimation

• If we fit the full missing mass region (instead of MMd<1.52 GeV), the Λ^* contribution increases by 33%. •The background level in the Θ^+ region becomes 6.5% more, and the significance drops to 3.8. •The χ^2 of the fit is bad: χ^2 /ndf=2.8 in the full region and χ^2 /ndf=2.4 in the region MMd<1.52 GeV.

- Sideband method overestimate BG level because of Λ^* leakage into the sideband region.
- However, a slight change of the BG level does not change the fitting result much.
- 10% reduction of BG level requires 15% increase of Λ^* contribution. It results in a 5% smaller BG level in 19 the Θ^+ region.

Photon energy dependence

1.53 GeV peak:
•No change in the peak position.→ not likely due to kinematical reflections.

1.60 GeV bump:
Only seen in the low energy region. → threshold effects?
Not seen in LH2 data
Associated with Λ(1520).
Different reaction mechanism from that of the 1.53 peak.

K⁻p missing mass in sideband regions

Θ⁺ formation cross-section by simple kaon re-scattering is small.

A theoretical estimation by Titov is small (nucl-th/0506072).

Any hint for reaction mechanism?

•Missing mass dependence of the Θ^+ peak may tell the exchanged particle.

•Missing mass cannot be larger than the mass difference $M_{\Theta} - M_{N}$.

•LEPS covers kinematical region where K⁺ is on-shell.

•Momentum transfer $t = MM^2$. Forward $\Lambda^* \rightarrow$ Large MM.

MMp(γ ,K⁻p) GeV/c²

• LEPS has larger acceptance in the forward angle. Small momentum transfer (i.e. large missing mass) events are enhanced if we assume phase-space production of Θ^+ .

Variation of MM_p(pK⁻) gate width

MMp (GeV)	MC	Excess@1.53 GeV
[0.40,0.62]	1.00	1.00
[0.44,0.56]	0.72	0.91
[0.45,0.55]	0.60	0.72
[0.46,0.54]	0.46	0.66

Acceptance of Narrow MMp gate: MC(pahse space) < Excess@1.53 GeV →Indication of K exchange. Note: MMp is smeared by Fermi motion.

Search for $\gamma d \rightarrow \Lambda(1116) \Theta^+$

 $1.5 \text{ GeV} < E\gamma < 2.4 \text{ GeV}$

$\gamma p \rightarrow \Lambda(1116) X$

MMp(γ , π^- p) GeV/c²

- Λ (1116) is the lightest hyperon. Background under the peak is not associated with K⁺ production.
- Background due to non strangeness processes are removed by side-band subtraction.

$\gamma d \rightarrow \Lambda(1116) X$

• ~100k Λ events are identified in the deuteron data.

•The missing mass was calculated by assuming a nucleon at rest.

Close up of the Missing Mass

MMp(γ , π^- p) GeV/c²

• Background due to Σ decay cannot be removed completely.

•The missing mass resolution is worse than the $\Lambda(1520)$ one because of higher momentum of $\Lambda(1116)$.

- The missing mass distribution is smeared by Fermi motion.
- Events with 0.40 GeV < MM< 0.58 GeV were selected for the Θ^+ search.

Missing mass for $\gamma d \rightarrow \Lambda(1116) X$

• The missing mass were calculated by assuming a deuteron at rest for both LD2 and LH2 data.

MMd(γ , π -p) spectra

Normalization factor for LH2 data (green line) is 2.6.
→ No large p/n asymmetry.

• No excess at 1.53 GeV nor 1.6 GeV.

•Quasi-free process can be reproduced by free process.
→ small effect from Fermi motion.

•Large cross-section compared with Λ (1520).

•Missing Mass resolution is worse.

Summary

- We searched for Θ^+ in the in the $\gamma d \rightarrow \Lambda * (1520) X$,
- $\gamma d \rightarrow K^+ K^- X$, and $\gamma d \rightarrow \Lambda(1116) X$ reactions
- A ~ 5 σ Peak is seen at ~1.53 GeV/c² in the missing mass of the (γ , Λ *).
- The peak is not be seen in the K⁻p invariant mass region outside of the $\Lambda(1520)$.
- If the peak is due to the Θ^+ , its production by rescattering seems to be small in our kinematical region.
- Bump structure) around 1.6 GeV was also observed in the (γ , Λ^*) reaction in the low energy region.
- 1.53 GeV/c² peak was confirmed in $\gamma d \rightarrow K^+ K^- X$.
- No peak was seen in $\gamma d \rightarrow \Lambda(1116) X$.

Cross-sections and upper limits will be given shortly.

New experiment with improved acceptance will start in March, 2006.

MMd(pK⁻) in different M(pK⁻) gates around $\Lambda(1520)$ mass

The peak structure looks associated with $\Lambda(1520)$ production.

S/N ratio gets lower by widening M(pK-) gate, but the peak height looks constant.