Search for the Θ^+ pentaquark in the $\gamma d\rightarrow\Lambda NK$ reaction with CLAS

S. Niccolai, IPN Orsay
for the CLAS collaboration
Search for the Θ^+ pentaquark in the $\gamma d \rightarrow \Lambda NK$ reaction with CLAS
\[\gamma d \rightarrow \Lambda \Theta^+: \text{the reaction} \]

- **Strangeness tagged** by \(\Lambda \): \(S=+1 \) both for \(nK^+ \) and \(pK^0 \)
- Unlike \(pK^+K^-n \) or \(pK^0K^-p \):
 - No possibility of **kinematical reflections** of mesons \(\rightarrow KK \)
 (only **one** \(K \), from \(\Theta^+ \) decay, in the final state)
 - “Clean” reaction: **no background channels** to remove
- **Model predictions**: \(\sigma \rightarrow \Gamma(\Theta^+) \) [Guzey, PRC 69, 065203 (2004)]
\[\gamma d \rightarrow \Lambda \Theta^+ : \text{model prediction} \]

\[\frac{d\sigma}{dt} \sim \Gamma(\Theta^+) \frac{d\sigma^{(p+n)}}{dt} S(t) \]

\[\frac{d\sigma^{(p+n)}}{dt} \text{ interference of} \]

\[\gamma p \rightarrow \Lambda(\Sigma^0)K^+ \text{ (exp. data)} \]

and \[\gamma n \rightarrow \Lambda(\Sigma^0)K^0 \text{ (parametrization)} \]

\[S(t) \text{ nuclear suppression factor} \]

\[\frac{d\sigma}{dt} \text{ max for } E_\gamma = 1.2 \text{ GeV, } -0.2 < t < 0 \]

\[\sigma_{\text{tot}} \approx 3 \text{ nb} \]

Cut \[p_{n(p)} > 300 \text{ MeV/c} \text{ to remove N-spectator events – non resonant background} \]
\[\gamma d \rightarrow \Lambda \Theta^+ : \text{CLAS G10 analysis} \]

CLAS is designed to measure exclusive reactions with multi-particle final states.

All G10 data analyzed
Both torus field settings
Higher statistics for low-field

10-20-2005

S. Niccolai, IPN Orsay
\(\gamma d \rightarrow \Lambda \Theta^+ \): CLAS G10 analysis

Decay modes under study:

- \(\Lambda \rightarrow p\pi^- \quad \Theta^+ \rightarrow K^+ n \)

3 charged particles, 1 neutral in the final state

CLAS is designed to measure exclusive reactions with multi-particle final states
\[\gamma d \rightarrow \Lambda \Theta^+ : \text{CLAS G10 analysis} \]

Decay modes under study:

- \(\Lambda \rightarrow p\pi^- \quad \Theta^+ \rightarrow K^+ n \)
- \(\Lambda \rightarrow p\pi^-, \Theta^+ \rightarrow K^0 p, K^0_s \rightarrow \pi^+ \pi^- \)

CLAS is designed to measure exclusive reactions with multi-particle final states.

10-20-2005
S. Niccolai, IPN Orsay
\[\gamma d \rightarrow \Lambda \Theta^+: \text{CLAS G10 analysis} \]

Decay modes under study:
- \[\Lambda \rightarrow p \pi^- \quad \Theta^+ \rightarrow K^+ n \]
- \[\Lambda \rightarrow p \pi^-, \Theta^+ \rightarrow K^0 p, K^0_s \rightarrow \pi^+ \pi^- \]

5 charged particles in the final state

- **Possible to analyze 6 different exclusive topologies**
 1) All 5 particles detected
 2) Missing \(\pi^- \)
 3) Missing \(K^0 \)
 4) Missing \(p \)
 5) Missing \(\Lambda \)
 6) Missing \(\pi^+ \)
nK⁺ decay mode: data analysis

Channel ID:
- K⁺, p, π⁻ detected (PID+timing cuts)
- n identified by missing mass (3σ cut)
- Λ identified by pπ⁻ invariant mass (3σ)
nK⁺ decay mode: Σ⁻ background?

\[\gamma d \rightarrow pK^+\Sigma^- \rightarrow pK^+n\pi^- \]

\[\gamma d \rightarrow pK^+\Sigma^- \rightarrow pK^+n\pi^- \]

- pK⁺ missing mass before Λ cut
- pK⁺ missing mass after Λ cut
- No Σ⁻ background

LOW-FIELD G10 DATA

<table>
<thead>
<tr>
<th>ID</th>
<th>Entries</th>
<th>Mean</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1689</td>
<td>1.196</td>
<td>0.1242E-03</td>
</tr>
<tr>
<td>P2</td>
<td>9885.</td>
<td>0.667E-02</td>
<td>0.1833E-03</td>
</tr>
<tr>
<td>P3</td>
<td>291.0</td>
<td>96.96</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>-6557.</td>
<td>96.44</td>
<td></td>
</tr>
</tbody>
</table>

\[\chi^2/\text{ndf} \]

10-20-2005
nK$^+$ decay mode: mass spectra

- $M(nK^+)$ mass with and without **kinematic fit**
- 3 parallel independent analyses (Carman, Mirazita-Rossi, S.N.), **in agreement** (10%)
- no significant Θ^+ **signal**, with and without **kinematic cuts** (Guzey)
- MC studies for acceptance underway, to extract **cross section upper limits**
nK⁺ decay mode: mass spectra

- M(nK⁺) mass with and without kinematic fit
- 3 parallel independent analyses (Carman, Mirazita-Rossi, S.N.), in agreement (10%)
- no significant Θ⁺ signal, with and without kinematic cuts (Guzey)
- MC studies for acceptance underway, to extract cross section upper limits

Model prediction

G10 low field
ΛK⁺(n), all Eγ
pK0 mode – 1) all particles detected

2 protons, 2π^-, 1π^+
\[p(p_1) > p(p_2), \; p(\pi^-_1) > p(\pi^-_2) \]

Channel ID cuts:
• $-0.01 < MM^2 < 0.005$ (GeV2/c4)
pK⁰ mode – 1) all particles detected

Channel ID cuts:
• -0.01<MM²<0.005 (GeV²/c⁴)
• M(pπ⁻) = M(L) ± 3σ
• M(π⁺π⁻) = M(K⁰) ± 3σ

4 combinations with 4 pK⁰ mass spectra that can be summed up
pK⁰ mode – 1) all particles detected

- 3 parallel independent analyses (Hicks-Mibe, Mirazita-Rossi, S.N.), cross checking
- no significant Θ⁺ signal in the pK⁰ invariant mass
- MC studies for acceptance underway, to extract cross section upper limits

Very preliminary
pK⁰ mode – 1) all particles detected

- 3 parallel independent analyses (Hicks-Mibe, Mirazita-Rossi, S.N.), cross checking
- no significant Θ⁺ signal in the pK⁰ invariant mass
- MC studies for acceptance underway, to extract cross section upper limits
pK0 mode – 2) missing π^-

2 protons, 1π^-, 1π^+

Channel ID cuts:
- $MM = M(\pi^-) \pm 3\sigma$

10-20-2005 S. Niccolai, IPN Orsay
pK⁰ mode – 2) missing π⁻

π⁺π⁻ invariant masses

pπ⁻ invariant masses

Channel ID cuts:
• MM = M(π⁻) ± 3σ
• IM(π⁺π⁻) = M(K⁰) ± 3σ
• IM(pπ⁻) = M(Λ) ± 3σ
pK0 mode – 2) missing π$^-$

- 2 parallel independent analyses (Mirazita-Rossi, S.N.)

- no significant Θ$^+$ signal at 1.52$<$M(pK0)$<$1.55 GeV/c2 in any of the 4 spectra

- MC studies for acceptance underway, to extract cross section upper limits

10-20-2005

S. Niccolai, IPN Orsay
pK⁰ mode – 2) missing π⁻
pK^0 \text{ mode – 3) missing } K^0

2 \text{ protons, 1}\pi^-

Channel ID cuts:
- \text{MM} = M(K^0) \pm 3\sigma
- \text{IM}(p\pi^-) = M(\Lambda) = 3\sigma
pK^0 mode – 3) missing K^0

• 2 parallel independent analyses (Mirazita-Rossi, S.N.)

• no significant Θ^+ signal at 1.52<M(pK^0)<1.55 GeV/c^2 in any of the 2 spectra

• MC studies for acceptance underway, to extract cross section upper limits

Very preliminary
pK0 mode – 3) missing K0

- 2 parallel independent analyses (Mirazita-Rossi, S.N.)

- no significant Θ^+ signal at 1.52<$M(pK^0)$<1.55 GeV/c2 in any of the 2 spectra

- MC studies for acceptance underway, to extract cross section upper limits
Conclusions and outlook

• Search for Θ^+ in the $\gamma d \rightarrow \Lambda N K$ reaction carried out using the high-statistics CLAS-G10 data set
• Both the nK^+ and pK^0 decay modes have been analyzed
• 4 parallel analyses are underway
• The pK^0 decay mode has been studied in 4 different topologies
• No statistically significant structure is observed in the NK invariant mass spectrum
• MC studies are underway to extract cross section upper limits