"PentaQuarks: Experimental Review"

"An Observer's view of PentaQuark Experiments"

"PentaQuarks: damn peaks or statistics"

(after Samuel Clemmens)

A.M. Sandorfi Brookhaven National Lab

Pentaquark 2005, Jefferson Lab, Oct. 20'05

Pentaquark history

General idea of five-quark states has been around since late 60's. Predicted masses range from 1500 to 1800 MeV, widths ~hundreds MeV.
 Bag models [R.L. Jaffe '76, J. De Swart '80], lightest pentaquark J^p =1/2⁻; Soliton models [Diakonov, Petrov '84, Chemtob'85, Praszalowicz '87. Walliser'92]

A new wave of experimental searches was motivated by predictions in χSM model: Diakonov, Petrov, Polyakov. Z.Physics A359 (1997).

Anti-decuplet $q^4 \overline{q}$ states

V. Burkert, NSTAR'05

The consequences of finding narrow pentaQuarks:

• QCD does not rule out $q^4 \overline{q}$ states;

if they could be shown to definitely not exist \Rightarrow something missing from QCD

- why a narrow width ? what aspects of their structure keep them together so long ?
 - meson+baryon molecule
 - diquark+ diquark+antiquark
 - \Rightarrow another potentially useful handle on non-perturbative QCD

• the bottom line:

It sure would be fun if they're real !!!

Suggested properties of the Θ^+

- Spin = 1/2 (3/2 ?)
- Parity = + (-?)
- Isospin = 0
- Strangeness = +1

Decay channels

The initial evidence for the **O**⁺

V. Burkert, *NSTAR'05*

Limits on the Θ^+ width:

• all positive results show peaks consistent with exp. resolution

W. Gibbs, PRC70, 054208 ('04)

- reanalysis of K⁺N scattering data base:
 - data base is noisy at low K⁺ momenta;
 - analysis of selected sample:

$\Rightarrow \Gamma_{\Theta} = 0.9 \pm 0.3 \text{ MeV}$

- amazingly narrow;
- even, unbelievably narrow?

Non-evidence for Pentaquarks

V. Burkert, NSTAR'05

New and old CLAS data (Y D)

"The statistical significance in the published data is an unlucky coincidence of a statistical fluctuation and an underestimate of the background in the mass region of 1.54 GeV/c²."

 G10 mass distribution can be used as a background for refitting the published spectrum. *Evidence* for the Θ^+ , without *curves to guide the eye*

Bkg distributed as a Gaussian with mean $\mu_B = N_B$ and $\sigma_{Bkg} = \sqrt{N_B}$:

$$\frac{1}{\sigma_{Bkg\sqrt{2\pi}}}e^{-(Y-\mu_B)^2/2\sigma_{Bkg}^2}$$

- probability of reaching $N_P = N_S + N_B$ $(N_S)^2/2\sigma_{Bkg}^2$ $\sigma_{Bkg\sqrt{2\pi}}$
- how far out is this, in units of σ ? $e^{-(K\sigma_B)^2/2\sigma_{Bkg}^2} = e^{-(N_S)^2/2\sigma_{Bkg}^2}$

/

Probability of finding *exactly*

$$N_P = N_S + N_B \iff K = \frac{N_S}{\sqrt{N_B}}$$

A more meaningful statistical significance

• probability of Bkg fluctuating up into the range $N_P \pm \sqrt{N_P}$

$$\Rightarrow \frac{1}{\sigma_{Bkg}\sqrt{2\pi}} \int_{N_P-\sqrt{N_P}}^{N_P+\sqrt{N_P}} e^{-(Y-N_B)^2/2N_B} dy$$
$$N_P = N_S + N_B$$

 $\in \left[\frac{N_S}{\sqrt{N_S+2N_B}}, \frac{N_S}{\sqrt{N_S+N_B}}\right]$

Q: how far out is this, in units of σ ?

$$K = \left\{ -2 \cdot \ln \left[\int_{N_P - \sqrt{N_P}}^{N_P + \sqrt{N_P}} e^{-(Y - N_B)^2 / 2N_B} dy \right] \right\}^{\frac{1}{2}}$$

Statistics for published Θ^+ observations

	Reaction	$N_P = N_S +$	N_B	Fluctuation	Fluctuation
		N_B		to $N_P = N_S + N_B$	to $N_P \pm \sqrt{N_P}$
				$= N_s / \sqrt{N_B}$	
LEPS-1	$\gamma C \to K^+ K^- X$	36	17	4.6	3.1
DIANA	$K^+Xe \rightarrow K^o_S pXe'$	72	43	4.4	2.9
JLab(D)-1	$\gamma D \to K^+ K^- pn$	103	59	5.8	4.4
SAPHIR	$\gamma p \to K^o_S K^+ n$	111	56	7.3	5.9
COSY-1	$pp \rightarrow K_S^o p \Sigma^+$	279±18	200	5.6	4.0
HERMES	$e^+D \to K^o_S pX$	201±15	148	4.3	2.7
ZEUS	$e^+ p \rightarrow e^+ K^o_S p X$	1283±36	1072	6.4	5.0
JLab(p)	$\gamma p \to \pi^+ K^+ K^- n$	89	47	6.1	4.6
SVD(I)	$pA \rightarrow K_S^o pX$	128	81	5.2	3.8
SVD(II)	$pA \rightarrow K_S^o pX$	1127	940	6.0	4.6
ITEP	$\nu A \to K^o_S p \overline{X}$	36	11	7.5	5.8
KN-Gibbs	$K^+D\to X$	~13770	~13140	5.6	5.1

Statistics for published $\Theta^{\scriptscriptstyle +}$ observations

	Reaction	$N_P = N_S +$	N_B	Fluctuation	Fluctuation
		N_B		to $N_P = N_S + N_B$	to $N_P \pm \sqrt{N_P}$
				$= N_s / \sqrt{N_B}$	
LEPS-1	$\gamma C \to K^+ K^- X$	36	17	4.6	3.1
DIANA	$K^+Xe \rightarrow K^o_S pXe'$	72	43	4.4	2.9
JLab(D)-1	$\gamma D \to K^+ K^- pn$	103	59	5.8	4.4
SAPHIR	$\gamma p \to K^o_S K^+ n$	111	56	7.3	5.9
COSY-1	$pp \rightarrow K_S^o p\Sigma^+$	279±18	200	5.6	4.0
HERMES	$e^+D \rightarrow K^o_S pX$	201±15	148	4.3	2.7
ZEUS	$e^+ p \rightarrow e^+ K^o_S p X$	1283±36	1072	6.4	5.0
JLab(p)	$\gamma p \to \pi^+ K^+ K^- n$	89	47	6.1	4.6
SVD(I)	$pA \rightarrow K_S^o pX$	128	81	5.2	3.8
SVD(II)	$pA \rightarrow K_S^o pX$	1127	940	6.0	4.6
ITEP	$v \overline{A \to K_S^o p X}$	36	11	7.5	5.8
KN-Gibbs	$\overline{K^+D\to X}$	~13770	~13140	5.6	5.1

K⁺N scattering analysis W. Gibbs, PRC**70**(04)

- I=0 from K⁺D
- I=1 from K⁺p
- 8 points come from 1 out of 4 data sets;
- renormalized to another set with larger errors
- significance depends critically on shape of I=0 cross section

K⁺N scattering analysis W. Gibbs, PRC**70**(04)

- I=0 from K⁺D
- I=1 from K⁺p
- 8 points come from 1 out of 4 data sets;
- renormalized to another set with larger errors
- significance depends critically on shape of I=0 cross section
- scatter in single-energy solutions scatter in data sets
- intriguing result, BUT !?!

Statistics for published $\Theta^{\scriptscriptstyle +}$ observations

	Reaction	$N_P = N_S +$	N_B	Fluctuation	Fluctuation
		N_B		to $N_P = N_S + N_B$	to $N_P \pm \sqrt{N_P}$
				$= N_s / \sqrt{N_B}$	
LEPS-1	$\gamma C \to K^+ K^- X$	36	17	4.6	3.1
DIANA	$K^+Xe \rightarrow K^o_S pXe'$	72	43	4.4	2.9
JLab(D)-1	$\gamma D \rightarrow K^+ K^- pn$	103	59	5.8	4.4
SAPHIR	$\gamma p \to K^o_S K^+ n$	111	56	7.3	5.9
COSY-1	$pp \rightarrow K_S^o p\Sigma^+$	279±18	200	5.6	4.0
HERMES	$e^+D \rightarrow K^o_S pX$	201±15	148	4.3	2.7
ZEUS	$e^+ p \rightarrow e^+ K^o_S p X$	1283±36	1072	6.4	5.0
JLab(p)	$\gamma p \to \pi^+ K^+ K^- n$	89	47	6.1	4.6
SVD(I)	$pA \rightarrow K_S^o pX$	128	81	5.2	3.8
SVD(II)	$pA \rightarrow K_S^o pX$	1127	940	6.0	4.6
ITEP	$vA \rightarrow K_S^o pX$	36	11	7.5	5.8
KN-Gibbs	$\overline{K^+D\to X}$	~13770	~13140	5.6	5.1

Evidence for the Θ^+ , without *curves to guide the eye*

are all these experiments really measuring the same thing ?

Suggested properties of the Θ^+

- Parity = + (-?)
- Isospin = 0
- Strangeness = +1

Decay channels

Statistics for published $\Theta^{\scriptscriptstyle +}$ observations

	Reaction	$N_P = N_S +$	N_B	Strangeness	Fluctuation
		N_B		tag	to $N_P \pm \sqrt{N_P}$
LEPS-1	$\gamma C \to K^+ K^- X$	36	17	yes	3.1
DIANA	$K^+Xe \rightarrow K^o_S pXe'$	72	43	yes	2.9
JLab(D)-1	$\gamma D \to K^+ K^- pn$	103	59	yes	4.4
SAPHIR	$\gamma p \to K^o_S K^+ n$	111	56	yes	5.9
COSY-1	$pp \rightarrow K_S^o p\Sigma^+$	279±18	200	yes	4.0
HERMES	$e^+D \rightarrow K^o_S pX$	201±15	148	no	2.7
ZEUS	$e^+ p \rightarrow e^+ K^o_S p X$	1283±36	1072	no	5.0
JLab(p)	$\gamma p \to \pi^+ K^+ K^- n$	89	47	yes	4.6
SVD(I)	$pA \rightarrow K_S^o pX$	128	81	no	3.8
SVD(II)	$pA \rightarrow K_S^o pX$	1127	940	no	4.6
ITEP	$vA \rightarrow K_S^o pX$	36	11	no	5.8
KN-Gibbs	$K^+D\to X$	~13770	~13140	yes	5.1

Published Null Experiments

Group	Reaction	Limit	Sensitivity?
BES e+e-	$J/\Psi - > \Theta\Theta^*$	<1.1x10 ⁻⁵	No?
Belle e+e-	Ψ(2S)> pK ⁰	<0.6x10 ⁻⁵	??
BaBar e+e-	Y(4S)>pK _s ⁰	<1.1x10 ⁻⁴	??
ALEPH	e ⁺ e ⁻ ->Z -> pK _s ⁰	<0.6x10 ⁻⁵	??
HERA-B	pA> pK _s ⁰ X	<0.02x [*]	No?
CDF	pp*> pK_s ⁰ X	<0.03x [*]	No?
HyperCP	pCu> pK _s ⁰ X	<0.3% K ⁰ p	No?
PHENIX	AuAu>n*K⁻	not given	??
Belle	$K^{+}Si>pK_{s}^{0}X$	<0.02x [*]	Yes?

K. Hicks, Ohio U.

$\Theta^+(p K_s)$ (1540) Invariant Mass

No signal observed in any p* region (SFL > 0.0 cm)

0.0 < p* < 0.5 GeV/c

BABAR

3.5 < p* < 4.0 GeV/c

K. Hicks, Ohio U.

WA89

 $\Sigma A \rightarrow K_{s} p X$

Null experiments

- tremendous statistics !
- no S=+1 tagging
- no sign of any structures at all
 why not Σ* ?
- fragmentation dominates at very high energies
 - could this inhibit production of exotics with complex structure?

- 2nd generation, dedicated pentaQuark-search experiments:
- JLab/CLAS G10 experiment: $\gamma + D \rightarrow p + K^- + \frac{K^+ + (n)}{3}$

• JLab/CLAS G11 experiment:

$$\gamma + p \rightarrow K^{\circ}_{s} + \underline{K^{+} + (n)}$$

$$\downarrow \qquad \textcircled{3^{+} \pi^{-}}$$

• LEPS-2 experiment:

$$\gamma + D \rightarrow \Lambda(1520) + \frac{K^{+} + (n)}{\texttt{S}^{+}?}$$
$$\downarrow \qquad \texttt{S}^{+}?$$
$$p + K^{-}$$

Fit to the MM(pK⁻) distributions

- The same 3rd degree polynomial as a background in both fits (for g2a function was scaled by x5.9).
- For the fit to the g10 distribution Gaussian, the sigma was fixed to the known CLAS resolution (determined from MC and fits to other peaks).

K. Hicks, Ohio U.

Comparison to SAPHIR

SAPHIR N(Θ^+)/N(Λ^*) ~ 9% CLAS N(Θ^+)/N(Λ^*) < 0.5% (95%CL)

July 13, 2005

K. Hicks, Ohio U.

Statistics for published $\Theta^{\scriptscriptstyle +}$ observations

	Reaction	$N_P = N_S + N_{-}$	N_B	Strangeness	Fluctuation
		1 B		tag	to $N_P \pm \sqrt{N_P}$
LEPS-1	$\gamma C \to K^+ K^- X$	36	17	yes	3.1
DIANA	$K^+Xe \rightarrow K^o_S pXe'$	72	43	yes	2.9
JLab(D)-1	$\gamma D \rightarrow K^+ K^- pn$	103	59	yes	4.4
SAPHIR	$\gamma p \rightarrow K^o_S K^+ n$	111	56	yes	5.9
COSY-1	$pp \rightarrow K_S^o p\Sigma^+$	279±18	200	yes	4.0
HERMES	$e^+D \to K^o_S pX$	201±15	148	no	2.7
ZEUS	$e^+ p \rightarrow e^+ K^o_S p X$	1283±36	1072	no	5.0
JLab(p)	$\gamma p \to \pi^+ K^+ K^- n$	89	47	yes	4.6
SVD(I)	$pA \rightarrow K_S^o pX$	128	81	no	3.8
SVD(II)	$pA \rightarrow K_S^o pX$	1127	940	no	4.6
ITEP	$vA \rightarrow K_S^o pX$	36	11	no	5.8
KN-Gibbs	$K^+D\to X$	~13770	~13140	yes	5.1

the survivors :

- Statistical significance of these peaks depends strongly on the assumed background
- Backgrounds are reasonable fits, but are not calculated

Sensitivity to the Background

LEPS-2: K⁻p missing mass spectrum

Excesses are seen at 1.53 GeV and at 1.6 GeV above the background level.

T. Nakano, QCD'2005

• Statistical significance =
$$K = \left\{ -2 \cdot \ln \left[\int_{N_P - \sqrt{N_P}}^{N_P + \sqrt{N_P}} e^{-(Y - N_B)^2 / 2N_B} dy \right] \right\}^{\frac{1}{2}}$$

= 4.7

• Statistical significance =
$$K = \left\{ -2 \cdot \ln \left[\int_{N_P - \sqrt{N_P}}^{N_P + \sqrt{N_P}} e^{-(Y - N_B)^2 / 2N_B} dy \right] \right\}^{\frac{1}{2}}$$

= 4.7

Statistics for Θ^+ observations

	Reaction	$N_P = N_S +$	N_B	Strangeness	Fluctuation
		N_B		tag	to $N_P \pm \sqrt{N_P}$
LEPS-1	$\gamma C \to K^+ K^- X$	36	17	yes	3.1
DIANA	$K^+Xe \rightarrow K^o_S pXe'$	72	43	yes	2.9
JLab(D)-1	$\gamma D \rightarrow K^+ K^- pn$	103	59	yes	4.4
SAPHIR	$\gamma p \rightarrow K^o_S K^+ n$	111	56	yes	5.9
COSY-1	$pp \rightarrow K_S^o p \Sigma^+$	279±18	200	yes	4.0
HERMES	$e^+D \to K^o_S pX$	201±15	148	no	2.7
ZEUS	$e^+ p \rightarrow e^+ K^o_S p X$	1283±36	1072	no	5.0
JLab(p)	$\gamma p \to \pi^+ K^+ K^- n$	89	47	yes	4.6
SVD(I)	$pA \rightarrow K_S^o pX$	128	81	no	3.8
SVD(II)	$pA \rightarrow K_S^o pX$	1127	940	no	4.6
ITEP	$vA \rightarrow K_S^o pX$	36	11	no	5.8
KN-Gibbs	$K^+D \to X$	~13770	~13140	yes	5.1
LEPS-2	$\gamma D \to p K^- K^+ n$	284	198	yes	4.7

other (non-**0**⁺) sightings

• Ξ^{--} (1862), $\left| sdsd\overline{u} \right\rangle$

NA49 🖌 BaBar 🗶

• Θ^{++} (1525), $|uuud\bar{s}\rangle$

• Θ^{o}_{c} (3100), $\left| udud\overline{c} \right\rangle$

H1 **√** BaBar, FOCUS, …**∦**

Some concluding remarks:

- pentaQuarks are, potentially, extremely interesting
 - a ⁺ would be the 1st S=+1 baryon !
- the ⁺ sits in precarious condition:
 - of 11 original sightings and 3 follow-up exps, all but 3 are in dispute

Some concluding remarks:

- pentaQuarks are, potentially, extremely interesting
 - a ⁺ would be the 1st S=+1 baryon !
- the ⁺ sits in precarious condition:
 - of 11 original sightings and 3 follow-up exps, all but 3 are in dispute

So far, there are few *damn peaks*, but lots of *statistics* !

- the surviving JLab(p), COSY-1 and LEPS-2 exps lack a calculated background; their background subtractions seem reasonable, but the statistics of small numbers can be tricky – eg. JLab(D)
- sightings of the ⁺⁺, ⁻⁻ and ^o_c have not been confirmed, and all are in dispute
- the burden of proof rests with the few positive experiments, who must identify a reproducible mechanism for seeing a "pentaQuark"

Necessary requirements of any future experiments:

- essential to have a strangeness tag for S=+1
- essential to provide firm production cross sections or limits
- essential to have the theoretical support for calculated backgrounds

Outlook:

- upcoming experiments (underway or *on the books*):
 - LEPS at SPring-8 p
 - COSY(2) pp
 - JLab/CLAS p
 - JLab/ Hall A D
 - KEK KD

W. Eyrich in the parallel session