$\Theta^+(1540)$ Search with CLAS $\gamma d \rightarrow p K^0 K^-(p)$

Nathan Baltzell David J. Tedeschi University of South Carolina CLAS Collaboration

Supported by NSF-0244982

- Motivation
- Event Identification
- Background Simulation

3 new, high statistic data sets

• Θ^{+} (g10) • $\gamma + d \rightarrow \Theta^{+} + K^{-} + (p) \rightarrow n + K^{+} + K^{-} + (p)$ • $\gamma + d \rightarrow \Theta^{+} + K^{-} + p \rightarrow n + K^{+} + K^{-} + p$ • $\gamma + d \rightarrow \Theta^{+} + K^{-} + (p) \rightarrow p + K^{0} + K^{-} + (p) \rightarrow p + \pi^{+} + \pi^{-} + K^{-} + (p)$ • $\gamma + d \rightarrow \Theta^{+} + K^{0} \rightarrow n + K^{+} + p + \pi^{-}$ • Θ^{+} (g11) • $\gamma + p \rightarrow \Theta^{+} + \overline{K^{0}} \rightarrow n + K^{+} + \pi^{+} + \pi^{-}$ • $\gamma + p \rightarrow \Theta^{+} + K^{-} + \pi^{+} \rightarrow n + K^{+} + K^{-} + \pi^{+}$ • Ξ_{5}^{--} (eg3)

•
$$\gamma + n (p) \rightarrow K^+ + K^+ + \Xi_5^{--}$$

CLAS $\gamma d \rightarrow \Theta^+ K^- p$

- Two distributions statistically consistent with each other:
 - 26% c.l. for null hypothesis from the Kolmogorov test (two histograms are compatible).
 - Reduced χ²=1.15 for the fit in the mass range from 1.47 to 1.8 GeV/c²

- With Fermi momentum being the only source of an energetic spectator proton, the cross section upper limit is 20nb.
- If we assume a more sophisticated model for an energetic spectator and take the Λ(1520) production as a guide, the cross section upper limit is 4-5 nb (model dependent).

- Complementary to nK⁺ K⁻p channel
- Exclusive Measurement
 - Undetected proton is considered a spectator
 - Reconstruct K⁰ from decay to $\pi^+\pi^-$
- pK⁰ strangeness defined by detected K⁻

10/20/05

Yield ~22,000

Momentum Distribution consistent with deuteron distribution up to ~ 200 MeV/c

CLAS provides wide coverage except at most forward angles

Physics Backgrounds $\gamma d \rightarrow p \pi^+ \pi^- K^-$ (p)

Channel is rich with hadronic processes

- Direct access to physics background
 - Populate Baryons: Λ* and Σ*
 - Mesons: a₀(980),a₂(1320), ρ₃(1690)
- Goal: Develop good description of background contribution
 - Prerequisite for understanding mass projections

Dzierba et al., Phys. Rev. D 69, 051901 (2004).

Hyperon t-dependence

 Λ (1520), Λ (1690), Λ (1820), Λ (1830), Λ (1890), Σ (1775)

 $\Lambda(1520)$ production consistent with slope of ~3

10/20/05

Meson t-dependence

 $a_0(980), a_2(1320), \rho_3(1690)$

Contributions increase with increasing photon energy

Meson and Hyperon Simulation

- Monte Carlo Simulation
 - Produce accurate acceptance
 - Background shape for m(pK⁰) spectrum
- Sample Nucleon Momentum Distribution
 - Begin with 3-body phase space
 - Bonn Wave Function
- Compute Relativistic Breit Wigner Amplitudes
 - s-dependant coefficients
 - Exponential t-dependance

$$A(s,t,m,\theta_h,\phi_h) = C(s) \frac{m_0 \Gamma}{m_0^2 - m^2 - im_0 \Gamma} e^{Bt} Y_l^m(\theta_h,\phi_h)$$

 $\Gamma = \left(\frac{m_0}{m}\right) \left(\frac{q}{q_0}\right) \Gamma_0$

- Weight events by sum of all amplitudes (squared)
 - Allows for interferences

Challenge - determine C(s)

D. Tedeschi, PentaQuark05

$\gamma n \rightarrow Y^* K^0$ Yield Estimates

Iterative procedure Phase space acceptance

Blue points - CLAS data: acceptance corrected and flux normalized

- Mesons forward produced
 - Low momentum proton
- Hyperon decay results in fast proton
- Use relative contributions to estimate meson amplitudes

Blue points - acceptance corrected data

Red Histogram - Monte Carlo calculation

Full Simulation with estimated coefficients

Good description over entire range of kinematics

M(pK⁻)

Phase space changes significantly as photon energy increases

16

- $\gamma d \rightarrow pK^0K^-(p)$ search part of larger CLAS effort.
 - Quasi-free, no FSI, well defined strangeness
- Before drawing conclusions and releasing results in this pentaquark search channel, it is important to understand the background.
- MC model resonant mesons and hyperons fit the data fairly well over wide range of kinematics with estimated parameters.
- In progress: Implementation of un-binned log-likelihood fit of the resonant amplitudes.