Polarimetry and Planned Experiments at the Superconducting Darmstadt Electron Linac S-DALINAC*

W. F. O. Müller, B. Steiner, T. Weiland, Institut für Theorie Elektromagnetischer Felder, TU Darmstadt, Germany

Mott Polarimeter at 100 keV and 5-10 MeV

- Asymmetry: $A(0) = (13.8 \pm 0.4)\%$
- Spin polarization:
 - Bulk: $P = (35.5 \pm 1.4)\%$
 - Superlattice: $P = (86 \pm 3)\%$

5-10 MeV Mott polarimeter design:
- Sherman function: min at 173° or more
- Difficult geometric shape
- Selected detector angle: 165°

Möller Polarimeter at 30-130 MeV

Polarization dependent cross section

Möller scattering angle

Photofission

- Polarized bremsstrahlung for fission of ^{238}U
 - Parity violation experiments
 - Neutron induced fission
 - Thermal neutrons
 - Neutron scattering
 - Low-lying resonances
 - Effects in the order of 10^{-6}
 - Alternate probe: photons

- Active target setup
 - Solid target sensitivity: 10°
 - Yield estimate: 0.1/(μA s)
 - Improvement: gas target device
 - Gas mixture of ^{19}F and Argon?

S-DALINAC Design

- Energy: 130 MeV
- Beam Current: 60 μA
- Duty Cycle: 3 GHz cw

Mott Polarimeter at 100 keV

100 keV Sherman function

Möller Polarimeter at 5-10 MeV

Polarization dependent cross section

S-DALINAC Design

Energy: 130 MeV
Beam Current: 60 μA
Duty Cycle: 3 GHz cw

(e,e'x) Experiments

Polarized structure functions in electron scattering

Inclusive scattering

Exclusive scattering

Polarized scattering

P or T violation

Final state interaction

Polarized targets

Polarization transfer

Measurement of fifth structure function at low momentum transfer

Break-up reaction of 3He for investigation of three-body force

*Work supported by DFG through SFB 634
†Corresponding author: eckardt@ikp.tu-darmstadt.de