Strangeness-changing scalar form factor from scattering data and CHPT

Michael Doering

THE GEORGE WASHINGTON UNIVERSITY
WASHINGTON, DC

Jefferson Lab

Pion-Kaon Interactions Workshop
February 14-15, 2018
Thomas Jefferson National Accelerator Facility Newport News, VA
M.D., Ulf-G. Meißner, Wei Wang,

JHEP 1310 (2013) 011 [arXiv:1307.0947 [hep-ph]]

HPC JSC grant jikp07
NSF PIF 1415459 \& CAREER PHY-1452055

Motivation: $\mathrm{K}^{\left.*\right|^{+} \dagger^{-}}$

- Within the SM, these processes proceed via loop diagrams like

mew physics entering the virtual parts, could largely alter observables

- Effective Hamiltonian: $\mathcal{H}_{\text {eff }}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{\substack{i=1 \\ \text { Wilson coeffs. }}}^{10}\left(C_{i}^{S M}+\Delta C_{i}^{N P}\right) \mathcal{O}_{i}$
(short-dist. interactions) (long-dist. interactions)
Slide from Wei Wang
V. Bernard, M. Oertel, E. Passemar and J. Stern, Dispersive representation and shape of the $K(I 3)$ form factors: Robustness, PRD 80 ('09)
V. Bernard, First determination of $f+(0)\left|V _u s\right|$ from a combined analysis of (tau \rightarrow Kpi nu) tau decay and piK scattering with constraints from Kl3 decays, JHEP 1406 (2014) 082
V. Bernard and E. Passemar, Chiral extrapolation of the strangeness changing $K \pi$ form factor, JHEP 04 (2010) 001 [arXiv:0912.3792] [INSPIRE].
V. Bernard and E. Passemar, Matching chiral perturbation theory and the dispersive representation of the scalar K form-factor, Phys. Lett. B 661 (2008) 95 [arXiv:0711.3450] [INSPIRE].
- 3-subtracted dispersion relation, subtraction constants from data ($K_{\ell 3}$ and $\tau \rightarrow K \pi \nu_{\tau}$) Matching to CHPT to two loops
S. Descotes-Genon and B. Moussallam, The $K^{(*) 0}(800)$ scalar resonance from Roy-Steiner representations of πK scattering, Eur. Phys. J. C 48 (2006) 553 [hep-ph/0607133] [INSPIRE].
Z.-H. Guo, J. Oller and J. Ruiz de Elvira, Chiral dynamics in form factors, spectral-function sum rules, meson-meson scattering and semi-local duality, Phys. Rev. D 86 (2012) 054006 [arXiv:1206.4163] [inSPIRE].
M. Jamin, J.A. Oller and A. Pich, Strangeness changing scalar form-factors, Nucl. Phys. B 622 (2002) 279 [hep-ph/0110193] [inSPIRE].
M. Jamin, J. Oller and A. Pich, Scalar K form factor and light quark masses, Phys. Rev. D 74 (2006) 074009 [hep-ph/0605095] [inSPIRE].
Up to three-channel, unsubtracted dispersion relations Determination of strange quark mass

Reaction geometry

θ_{l} : angle of emission between $K^{\star 0}$
and μ^{-}in di-lepton rest frame
$\theta_{K^{*}}:$ angle of emission between $K^{\star 0}$
and K^{-}in di-meson rest frame.
$\phi:$ angle between the two planes
$q^{2}:$ dilepton invariant mass square

Phase parametrization

Coupled-channel simple model from Unitarized CHPT [Oller, Oset, Pelaez, PRD (1999)]

Genuine s-channel resonance in kappa channel to model higher energies

Parametrization of πK phase shift and (model-dependent) prediction of ηK amplitude

Pole structure

					$z_{0}[\mathrm{MeV}]$	$a_{-1}(K \eta)\left[M_{\pi}\right]$	$a_{-1}(K \pi)\left[M_{\pi}\right]$	
		$\kappa(800)$	this work	(2-ch.)	792-i 279		$-29-i 57$	
		this work	(1-ch.)	$715-i 283$		$-45-i 62$		
		I MD, Meißner ('12)	$(\chi \mathrm{U})$	$815-i 226$		$-30-i 57$		
	Descotes-Genon, Moussallam ('06)			(Roy-S.)	$658-i 279$			
			$K_{0}^{*}(1430)$	this work	(2-ch.)	1388-i71	$-11-i 5$	$11+i 13$
		this work		(1-ch.)	1425-i120	0	$20+i 39$	
		Bugg ('10)		(phen.)	1427-i135			

Formalism

Match with NLO SU(3)

CHPT form factor at $\mathrm{s}=0$
[Gasser, Leutwyler NPB 250 ('85)]

$$
\begin{aligned}
F_{K \pi}(s)= & F_{K \pi}^{\chi}(0)+\left(F_{K \pi}^{\chi}\right)^{\prime}(0) s+\frac{s^{2}}{\pi} \int_{s_{K \pi}}^{\infty} d s^{\prime} \frac{F_{K \pi}\left(s^{\prime}\right) \sigma_{K \pi}\left(s^{\prime}\right) T_{K \pi, K \pi}^{*}\left(s^{\prime}\right)}{s^{\prime 2}\left(s^{\prime}-s-i \epsilon\right)} \\
& +\frac{s^{2}}{\pi} \int_{s_{K \eta}}^{\infty} d s^{\prime} \frac{F_{K \eta}\left(s^{\prime}\right) \sigma_{K \eta}\left(s^{\prime}\right) T_{K \eta, K \pi}^{*}\left(s^{\prime}\right)}{s^{\prime 2}\left(s^{\prime}-s-i \epsilon\right)}, \text { From UCHPT model } \\
F_{K \eta}(s)= & \underbrace{F_{K \eta}^{\chi}(0)+\left(F_{K \eta}^{\chi}\right)^{\prime}(0) s+\frac{s^{2}}{\pi} \int_{s_{K \pi}}^{\infty} d s^{\prime} \frac{F_{K \pi}\left(s^{\prime}\right) \sigma_{K \pi}\left(s^{\prime}\right) T_{K \eta, K \pi}^{*}\left(s^{\prime}\right)}{s^{\prime 2}\left(s^{\prime}-s-i \epsilon\right)}}_{K \eta} \begin{array}{l}
s^{2} \int_{s_{K \eta}}^{\infty} d s^{\prime} \frac{F_{K \eta}\left(s^{\prime}\right) \sigma_{K \eta}\left(s^{\prime}\right) T_{K \eta, K \eta}^{*}\left(s^{\prime}\right)}{s^{\prime 2}\left(s^{\prime}-s-i \epsilon\right)}
\end{array})
\end{aligned}
$$

Direct

$$
\mathbf{F}^{\chi}=\left(F^{\chi}(0)+\left(F^{\chi}\right)^{\prime}(0) s_{1}, \ldots, F^{\chi}(0)+\left(F^{\chi}\right)^{\prime}(0) s_{n}\right)^{T}
$$

inversion through discretization

$$
\binom{\mathbf{F}_{1}}{\mathbf{F}_{2}}=\binom{\mathbf{F}_{1}^{\chi}}{\mathbf{F}_{2}^{\chi}}+\left(\begin{array}{ll}
\mathbf{M}_{11} & \mathbf{M}_{12} \\
\mathbf{M}_{21} & \mathbf{M}_{22}
\end{array}\right)\binom{\mathbf{F}_{1}}{\mathbf{F}_{2}}
$$

Two-channel, twice subtracted DR

Callan-Treiman point [Jamin et al., PRD 74 (2006)]

Compare to once subtracted DR

- Slope of CHPT form factor at s=0 no longer matched
- More influence from high-energy input

Other comparisons

- 1-channel, twice subtracted
- Omnès function (no zeros)

$\begin{aligned} & \text { direct } \\ & \text { inversion }\end{aligned} \quad F_{K \pi}(s)=F_{K \pi}^{\chi}(0)+\left(F_{K \pi}^{\chi}\right)^{\prime}(0) s+\frac{s^{2}}{\pi} \int_{s_{K \pi}}^{\infty} d s^{\prime} \frac{F_{K \pi}\left(s^{\prime}\right) \sigma_{K \pi}\left(s^{\prime}\right) T_{K \pi, K \pi}^{*}\left(s^{\prime}\right)}{s^{\prime 2}\left(s^{\prime}-s-i \epsilon\right)}$
Omnès $\quad F_{K \pi}(s)=P(s) F_{K \pi}^{\chi}(0) \exp \left[s \frac{\left(F_{K \pi}^{\chi}\right)^{\prime}(0)}{F_{K \pi}^{\chi}(0)}+\frac{s^{2}}{\pi} \int_{s_{K \pi}}^{\infty} \frac{d s^{\prime}}{s^{\prime 2}} \frac{\delta\left(s^{\prime}\right)}{s^{\prime}-s}\right]$

Lineshapes

Predicted observables

Integral over invariant mass:

$$
\bar{B}^{0} \rightarrow K^{-} \pi^{+} l^{+} l^{-}
$$

$$
\begin{aligned}
\frac{d \Gamma_{S}}{d q^{2}} & \equiv \int_{\left(m_{\left.K^{*}-\delta m\right)^{2}}\right.}^{\left(m_{\left.K^{*}+\delta m\right)^{2}}\right.} d m_{K \pi}^{2} \frac{d^{2} \Gamma_{S}}{d q^{2} d m_{K \pi}^{2}} \\
m_{K^{*}} & \equiv m_{K^{*}(892)} \text { and } \delta_{m}=100 \mathrm{MeV}
\end{aligned}
$$

Comparison to experiment

(Predictions from 2013 compared to LHCb measurement 2015, JHEP 1611 (2016) 047) Measurements of the S-wave fraction in
$B^{0} \rightarrow K^{+} \pi^{-} \mu^{+} \mu^{-}$decays and the
$B^{0} \rightarrow K^{*}(892)^{0} \mu^{+} \mu^{-}$differential branching fraction

LHCb
The LHCb collaboration
E-mail: konstantinos.petridis@cern.ch

$$
F_{\mathrm{S}}=0.101 \pm 0.017(\text { stat }) \pm 0.009(\text { syst })
$$

Binning: $796<m_{K \pi}<996 \mathrm{MeV} / c^{2}$

$$
1.0<q^{2}<6.0 \mathrm{GeV}^{2} / c^{4}
$$

And now to something entirely different:

Interacting pions and kaons for the hadron gas

M. D. and V. Koch, Charge fluctuations and electric mass in a hot meson gas, PRC (2007) See also: J.R. Pelaez et al, PRD66 ('02), Gomez Nicola, Ruiz de Elvira ('13),...

Interaction corrections to $\log Z_{\mu}$

OR: $\log Z=\log Z_{0}+\sum_{i_{1}, i_{2}} z_{1}^{i_{1}} z_{2}^{i_{2}} b\left(i_{1}, i_{2}\right)$
Virial expansion $\quad B_{2}^{(\pi \pi), ~ B o l z z}(\mu=0) \quad$ Used, e.g., in: Venugopalan, Prakash, NPA 546 ('92)

$$
=\frac{1}{2 \pi^{3} \beta} \int_{2 m_{\pi}}^{\infty} d E E^{2} K_{2}(\beta E) \sum_{\ell, I}(2 I+1)(2 \ell+1) \frac{\partial \delta_{\ell}^{I}(E)}{\partial E}
$$

$$
B_{2}^{(\pi \pi), \text { Bose }}(\mu)=\frac{\beta}{4 \pi^{3}} \int_{2 m_{\pi}}^{\infty} d E \int_{-1}^{1} d x \int_{0}^{\infty} d k \frac{E k^{2}}{\sqrt{E^{2}+k^{2}}}\left[\delta_{0}^{2}(E)\left(n\left[\omega_{1}+\mu\right] n\left[\omega_{2}+\mu\right]+n\left[\omega_{1}-\mu\right] n\left[\omega_{2}-\mu\right]\right)\right.
$$

"Density" expansion
based on [Dashed, Ma,
Bernstein, ('69)]

$$
\begin{aligned}
& +\delta_{0}^{2}(E)\left(n\left[\omega_{1}+\mu\right] n\left[\omega_{2}\right]+n\left[\omega_{1}-\mu\right] n\left[\omega_{2}\right]\right)+3 \delta_{1}^{1}(E)\left(n\left[\omega_{1}+\mu\right] n\left[\omega_{2}\right]+n\left[\omega_{1}-\mu\right] n\left[\omega_{2}\right]\right) \\
& +\delta_{0}^{2}(E)\left(\frac{1}{3} n\left[\omega_{1}+\mu\right] n\left[\omega_{2}-\mu\right]+\frac{2}{3} n\left[\omega_{1}\right] n\left[\omega_{2}\right]\right)+3 \delta_{1}^{1}(E) n\left[\omega_{1}+\mu\right] n\left[\omega_{2}-\mu\right] \\
& \left.+\delta_{0}^{0}(E)\left(\frac{2}{3} n\left[\omega_{1}+\mu\right] n\left[\omega_{2}-\mu\right]+\frac{1}{3} n\left[\omega_{1}\right] n\left[\omega_{2}\right]\right)\right] .
\end{aligned}
$$

Straightforward calculation

Charge fluctuations:
$\left\langle\delta Q^{2}\right\rangle=V T \Pi_{00}(\omega=0, \mathbf{k} \rightarrow 0)=V T m_{\mathrm{el}}^{2}$
$\Pi_{\mu \nu}(\omega, \mathbf{k})=i \int d t d^{3} x e^{-i(\omega t-\mathbf{k x})}\left\langle J_{\mu}(\mathbf{x}, t) J_{\nu}(0)\right\rangle$
J_{μ} : EM current-current correlation

Interacting πK : Influence on electric mass

FIG. 13. Corrections to the electric mass or $\mathrm{CF},\left\langle\delta Q^{2}\right\rangle /\left(e^{2} V T^{3}\right)$ for πK interaction. The density and virial expansions are from Eqs. (F4) and (F6), respectively. The loop expansions " πK dynamical" and " πK contact" are from Eqs. (F1) and (F2) and Eq. (F3), respectively. The solid line shows the electric mass of a gas of free $\kappa(800), K^{*}(892), K_{0}^{*}(1430)$, and $K_{2}^{*}(1430)$ mesons.

Conclusions

- Evaluation of the scalar, strangeness-changing form factor
- Twice-subtracted dispersion relation \& matching to NLO CHPT
- Systematic influence from the ηK checked through a twochannel formulation (influence is generally small)
- Recent LHCb measurements are in agreement with predicted s-wave/p-wave ratio (~ 0.1)
(although within large uncertainties)
- Better partial waves needed to improve precision

Spare slides

Pion-pion and KK form factors

(Calculated with UCHpT, not dispersion relations)

Predicted observables for $\mathrm{K} \bar{K}$

$$
\bar{B}_{s}^{0} \rightarrow K^{+} K^{-} l^{+} l^{-}
$$

