Strangeness-changing scalar form factor from scattering data and CHPT

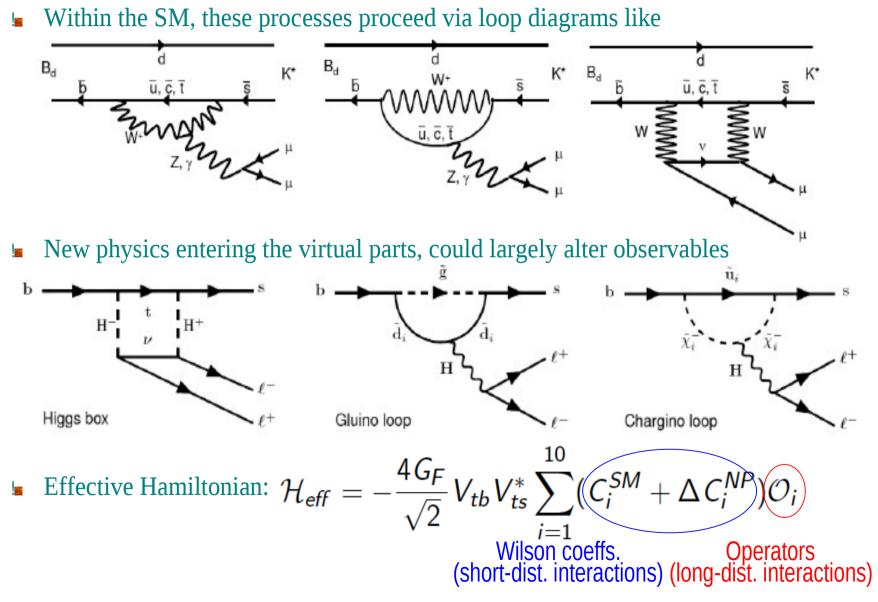
Michael Doering

Pion-Kaon Interactions Workshop February 14-15, 2018

Thomas Jefferson National Accelerator Facility Newport News, VA

M.D., Ulf-G. Meißner, Wei Wang, JHEP 1310 (2013) 011 [arXiv:1307.0947 [hep-ph]]

Supported by



DOE DE-AC05-06OR23177 & DE-SC0016582; NSF PIF 1415459 & CAREER PHY-1452055

HPC JSC grant *jikp07*

Motivation: K*I⁺I⁻

Slide from Wei Wang

V. Bernard, M. Oertel, E. Passemar and J. Stern, *Dispersive representation and shape of the K(l3) form factors: Robustness*, PRD 80 ('09)

V. Bernard, First determination of $f+(0) |V_us|$ from a combined analysis of (tau \rightarrow Kpi nu) tau decay and piK scattering with constraints from Kl3 decays, JHEP 1406 (2014) 082

V. Bernard and E. Passemar, Chiral extrapolation of the strangeness changing $K\pi$ form factor, JHEP 04 (2010) 001 [arXiv:0912.3792] [INSPIRE].

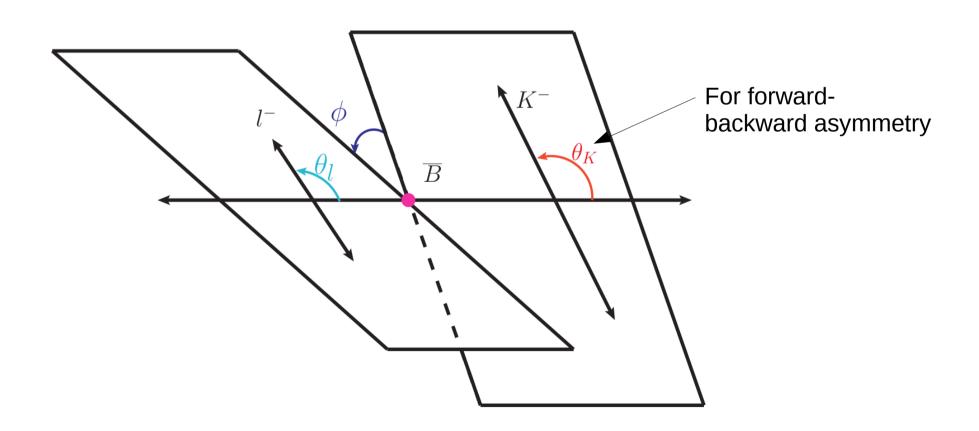
V. Bernard and E. Passemar, Matching chiral perturbation theory and the dispersive representation of the scalar $K\pi$ form-factor, Phys. Lett. **B 661** (2008) 95 [arXiv:0711.3450] [INSPIRE].

- 3-subtracted dispersion relation, subtraction constants from data ($K_{\ell 3}$ and $\tau \to K \pi \nu_{\tau}$) • Matching to CHPT to two loops
- S. Descotes-Genon and B. Moussallam, The $K^{(*)0}(800)$ scalar resonance from Roy-Steiner representations of πK scattering, Eur. Phys. J. C 48 (2006) 553 [hep-ph/0607133] [INSPIRE].

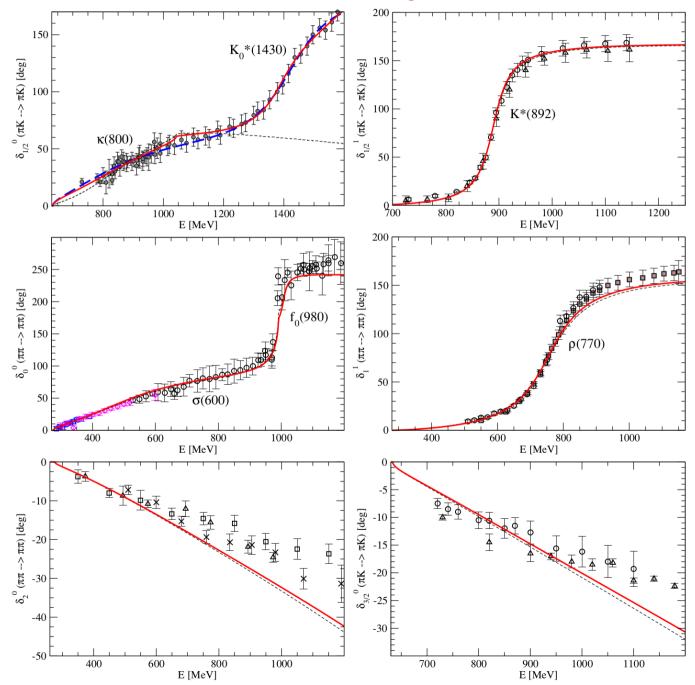
Z.-H. Guo, J. Oller and J. Ruiz de Elvira, *Chiral dynamics in form factors*, spectral-function sum rules, meson-meson scattering and semi-local duality, *Phys. Rev.* **D** 86 (2012) 054006 [arXiv:1206.4163] [INSPIRE].

M. Jamin, J.A. Oller and A. Pich, *Strangeness changing scalar form-factors*, *Nucl. Phys.* **B 622** (2002) 279 [hep-ph/0110193] [INSPIRE].

M. Jamin, J. Oller and A. Pich, Scalar $K\pi$ form factor and light quark masses, Phys. Rev. D 74 (2006) 074009 [hep-ph/0605095] [INSPIRE].


- \cdot Up to three-channel, unsubtracted dispersion relations
- Determination of strange quark mass

Incomplete list


Reaction geometry

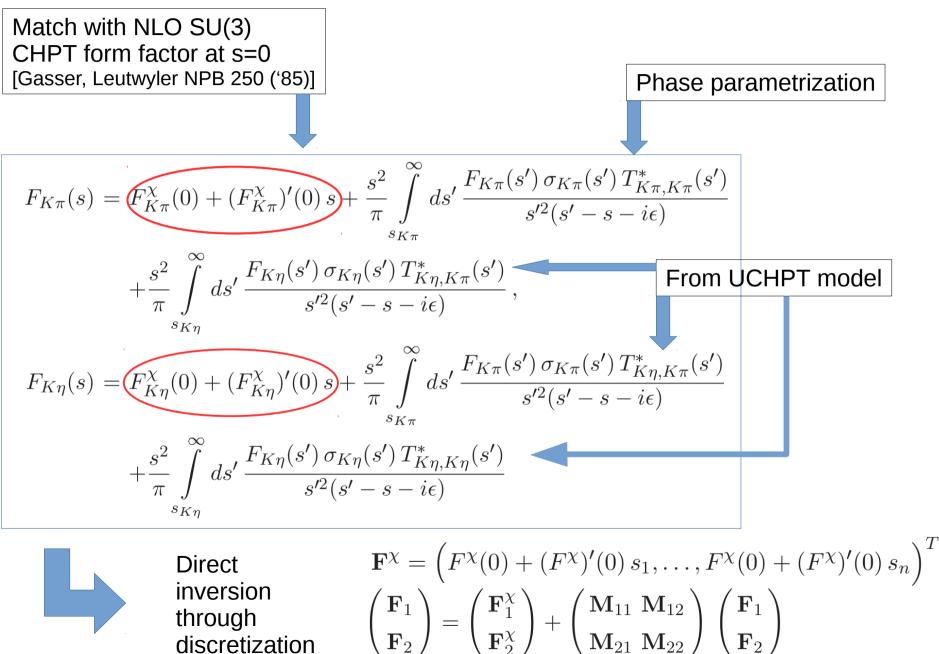
 $\overline{B} \rightarrow \overline{K}^*_J (\rightarrow K^- \pi^+) l^+ l^-$

- θ_I : angle of emission between K^{*0} and μ^- in di-lepton rest frame
- θ_{K^*} : angle of emission between K^{*0} and K^- in di-meson rest frame.
- $\blacksquare \phi$: angle between the two planes
- \blacksquare q^2 : dilepton invariant mass square

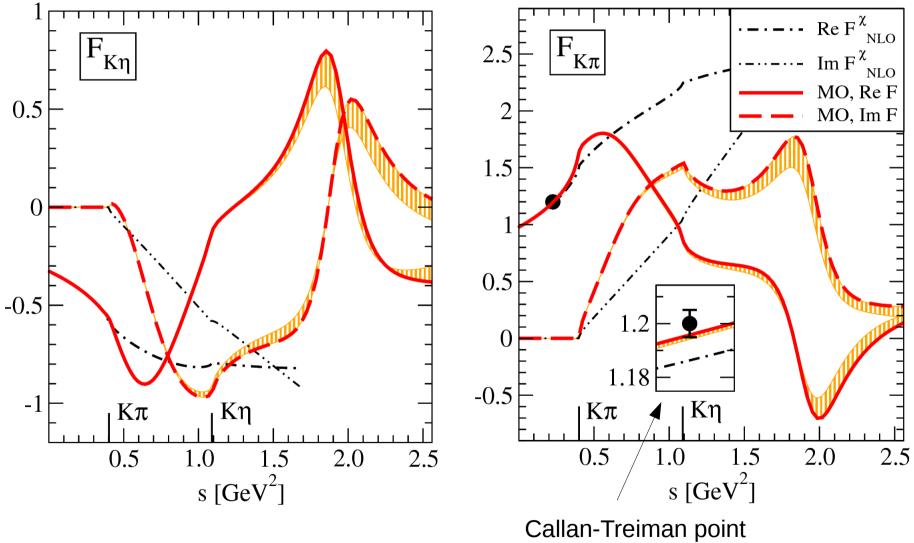
Phase parametrization

Coupled-channel simple model from Unitarized CHPT [Oller, Oset, Pelaez, PRD (1999)]

Genuine s-channel resonance in kappa channel to model higher energies

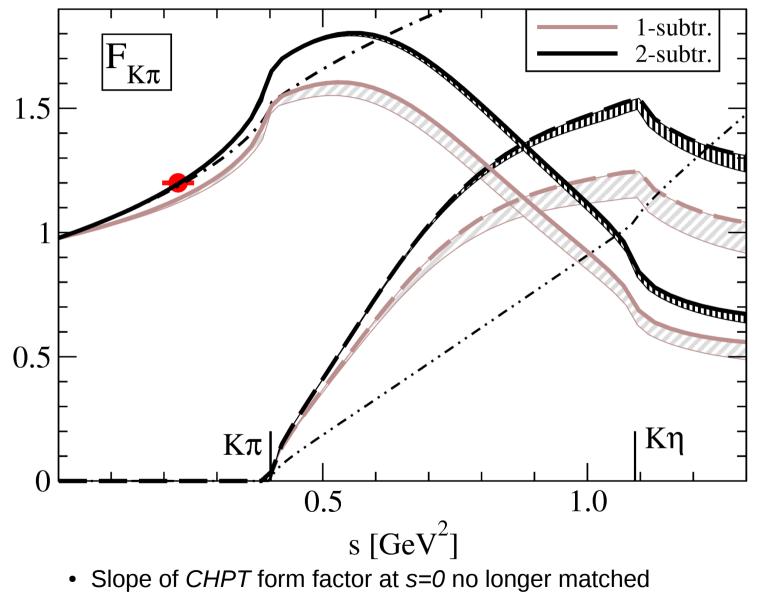


Parametrization of πK phase shift and (model-dependent) prediction of ηK amplitude


Pole structure

				$z_0 [{ m MeV}]$	$a_{-1}(K\eta) \ [M_{\pi}]$	$a_{-1}(K\pi) [M_{\pi}]$
	$\kappa(800)$	this work	(2-ch.)	792 - i279		-29 - i57
		this work	(1-ch.)	$715 {-}i283$		-45 - i62
	∣MD, M	eißner ('12)	(χU)	$815 {-}i226$		-30 - i57
Descotes-Genon, Moussallam ('06)			(Roy-S.)	$658 {-}i279$		
	$K_0^*(1430)$	this work	(2-ch.)	$1388{-}i71$	-11 - i5	11 + i13
		this work	(1-ch.)	$1425 {-}i120$	0	20 + i 39
		Bugg ('10)	(phen.)	$1427 {-}i135$		

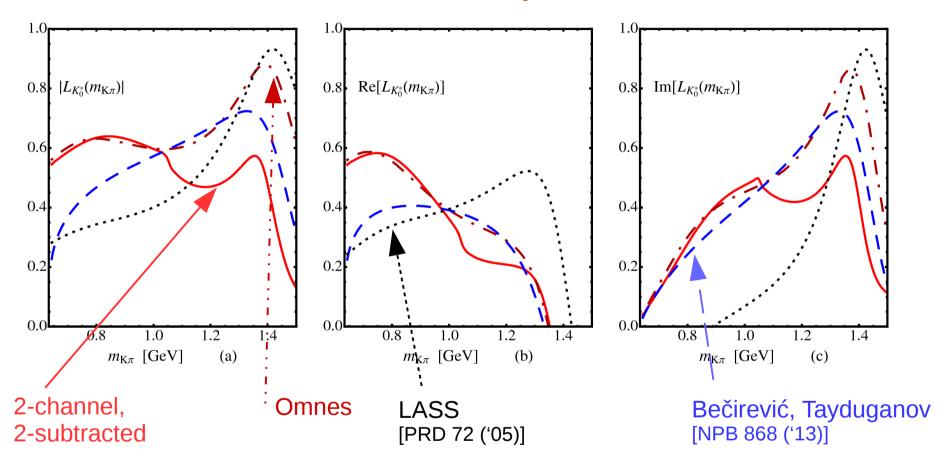
Formalism



Two-channel, twice subtracted DR

[Jamin et al., PRD 74 (2006)]

Compare to once subtracted DR

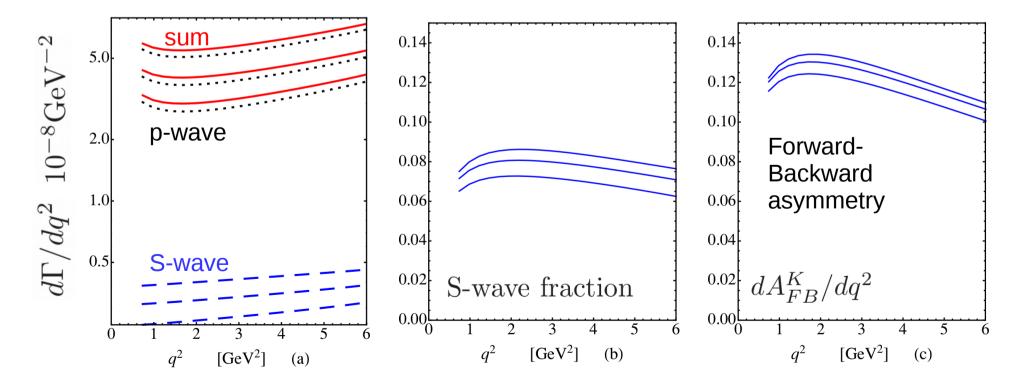

More influence from high-energy input

Other comparisons

• 1-channel, twice Omnès function (no zeros) subtracted 1-channel 2-channel F 1-channel Omnes Kπ 2 2 1 0 P(s) = 10 0.5 0.5 1.5 1.5 2.0 2.5 1.0 1.0 $s [GeV^2]$ $s [GeV^2]$

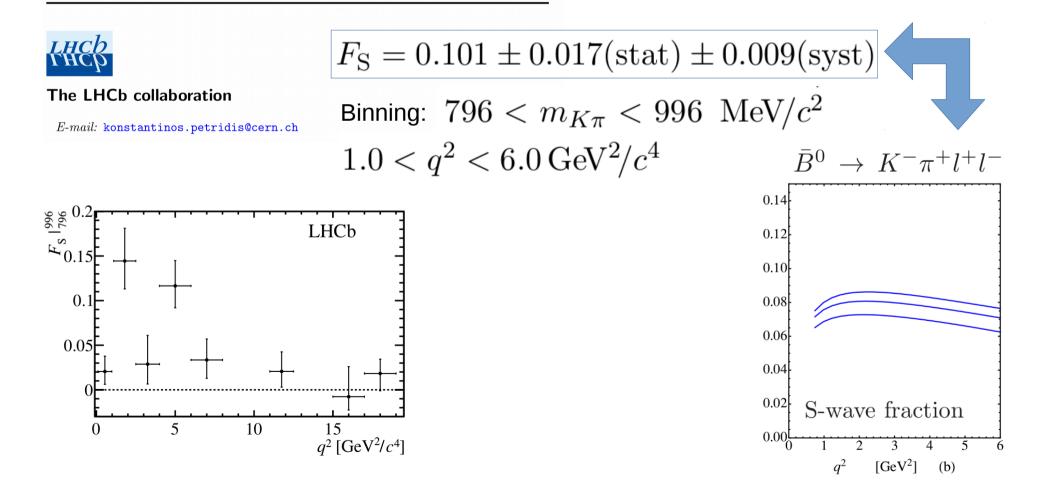
 $\begin{array}{ll} \text{direct} & \text{inversion} & F_{K\pi}(s) = F_{K\pi}^{\chi}(0) + (F_{K\pi}^{\chi})'(0) \, s + \frac{s^2}{\pi} \int\limits_{s_{K\pi}}^{\infty} ds' \, \frac{F_{K\pi}(s') \, \sigma_{K\pi}(s') \, T_{K\pi,K\pi}^*(s')}{s'^2(s'-s-i\epsilon)} \\ \\ \text{Omnès} & F_{K\pi}(s) = P(s) \, F_{K\pi}^{\chi}(0) \, \exp\left[s \, \frac{(F_{K\pi}^{\chi})'(0)}{F_{K\pi}^{\chi}(0)} + \frac{s^2}{\pi} \int\limits_{s'}^{\infty} \frac{ds'}{s'^2} \, \frac{\delta(s')}{s'-s}\right] \end{array}$

Lineshapes


Predicted observables

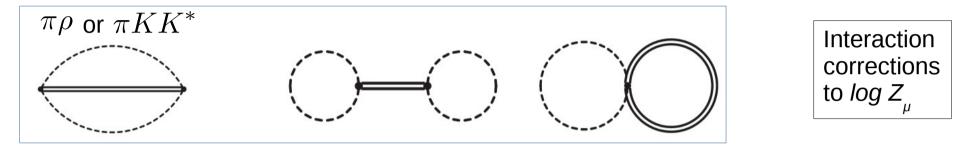
Integral over invariant mass:

$$\bar{B}^0 \rightarrow K^- \pi^+ l^+ l^-$$


$$\frac{d\Gamma_S}{dq^2} \equiv \int_{(m_{K^*} - \delta m)^2}^{(m_{K^*} + \delta m)^2} dm_{K\pi}^2 \frac{d^2\Gamma_S}{dq^2 dm_{K\pi}^2}$$

 $m_{K^*} \equiv m_{K^*(892)}$ and $\delta_m = 100 \,\mathrm{MeV}$

Comparison to experiment


(Predictions from 2013 compared to LHCb measurement 2015, JHEP 1611 (2016) 047) Measurements of the S-wave fraction in $B^0 \rightarrow K^+ \pi^- \mu^+ \mu^-$ decays and the $B^0 \rightarrow K^* (892)^0 \mu^+ \mu^-$ differential branching fraction

And now to something entirely different:

Interacting pions and kaons for the hadron gas

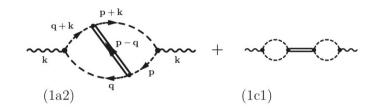
M. D. and V. Koch, Charge fluctuations and electric mass in a hot meson gas, PRC (2007) See also: J.R. Pelaez et al, PRD66 ('02), Gomez Nicola, Ruiz de Elvira ('13),...

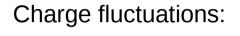
OR:
$$\log Z = \log Z_0 + \sum_{i_1, i_2} z_1^{i_1} z_2^{i_2} b(i_1, i_2)$$

 $B_2^{(\pi\pi), \text{ Boltz}}($ Virial expansion

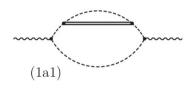
based on

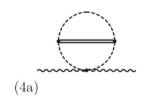
$$(\mu = 0)$$
 U

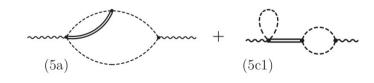

Ised, e.g., in: Venugopalan, Prakash, NPA 546 ('92)

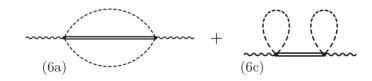

$$= \frac{1}{2\pi^{3}\beta} \int_{2m_{\pi}}^{\infty} dE \ E^{2} \ K_{2}(\beta E) \sum_{\ell,I} (2I+1)(2\ell+1) \ \frac{\partial \delta_{\ell}^{I}(E)}{\partial E}$$

$$B_{2}^{(\pi\pi),\text{Bose}}(\mu) = \frac{\beta}{4\pi^{3}} \int_{2m_{\pi}}^{\infty} dE \int_{-1}^{1} dx \int_{0}^{\infty} dk \, \frac{E \, k^{2}}{\sqrt{E^{2} + k^{2}}} \bigg[\delta_{0}^{2}(E)(n[\omega_{1} + \mu]n[\omega_{2} + \mu] + n[\omega_{1} - \mu]n[\omega_{2} - \mu]) \\ + \delta_{0}^{2}(E)(n[\omega_{1} + \mu]n[\omega_{2}] + n[\omega_{1} - \mu]n[\omega_{2}]) + 3 \, \delta_{1}^{1}(E)(n[\omega_{1} + \mu]n[\omega_{2}] + n[\omega_{1} - \mu]n[\omega_{2}]) \\ + \delta_{0}^{2}(E) \left(\frac{1}{3}n[\omega_{1} + \mu]n[\omega_{2} - \mu] + \frac{2}{3}n[\omega_{1}]n[\omega_{2}] \right) + 3 \, \delta_{1}^{1}(E) \, n[\omega_{1} + \mu]n[\omega_{2} - \mu] \\ + \delta_{0}^{0}(E) \left(\frac{2}{3}n[\omega_{1} + \mu]n[\omega_{2} - \mu] + \frac{1}{3}n[\omega_{1}]n[\omega_{2}] \right) \bigg].$$


Straightforward calculation


μ





$$\langle \delta Q^2 \rangle = VT \ \Pi_{00}(\omega = 0, \mathbf{k} \to 0) = VT m_{\rm el}^2$$
$$\Pi_{\mu\nu}(\omega, \mathbf{k}) = i \int dt d^3 x e^{-i(\omega t - \mathbf{k}\mathbf{x})} \langle J_{\mu}(\mathbf{x}, t) J_{\nu}(0) \rangle$$
$$J : \text{EM current-current correlation}$$

Interacting πK : Influence on electric mass

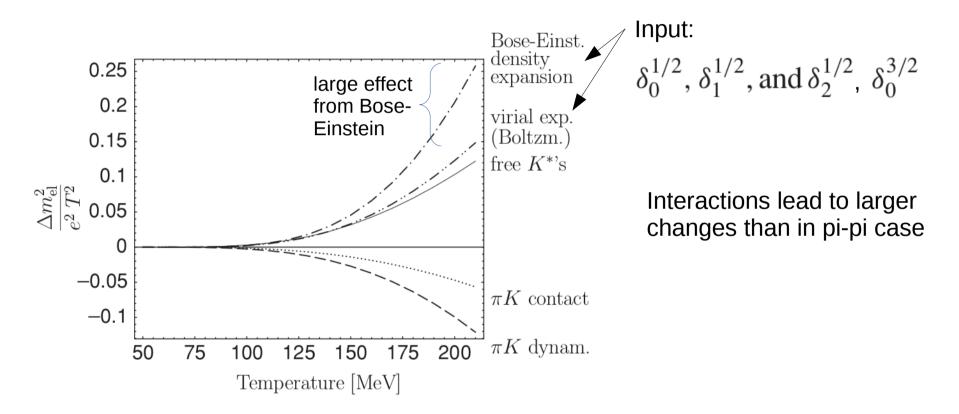
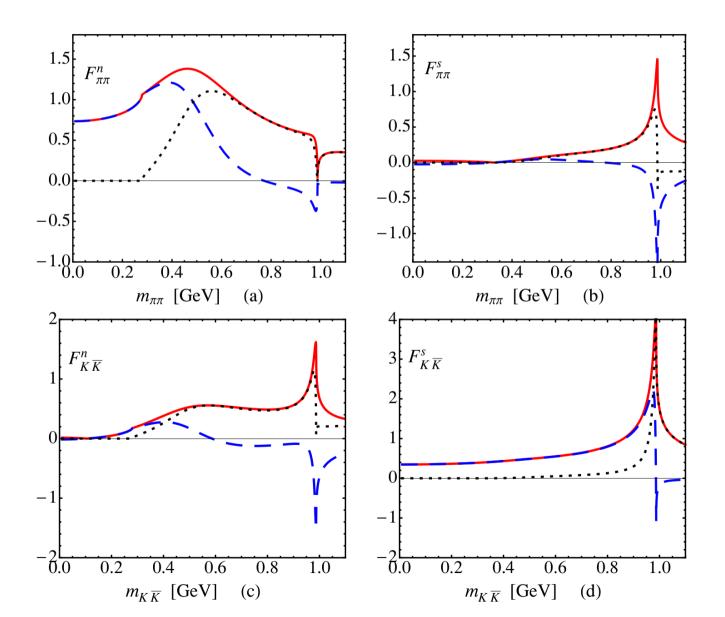


FIG. 13. Corrections to the electric mass or CF, $\langle \delta Q^2 \rangle / (e^2 V T^3)$ for πK interaction. The density and virial expansions are from Eqs. (F4) and (F6), respectively. The loop expansions " πK dynamical" and " πK contact" are from Eqs. (F1) and (F2) and Eq. (F3), respectively. The solid line shows the electric mass of a gas of free $\kappa(800)$, $K^*(892)$, $K_0^*(1430)$, and $K_2^*(1430)$ mesons.

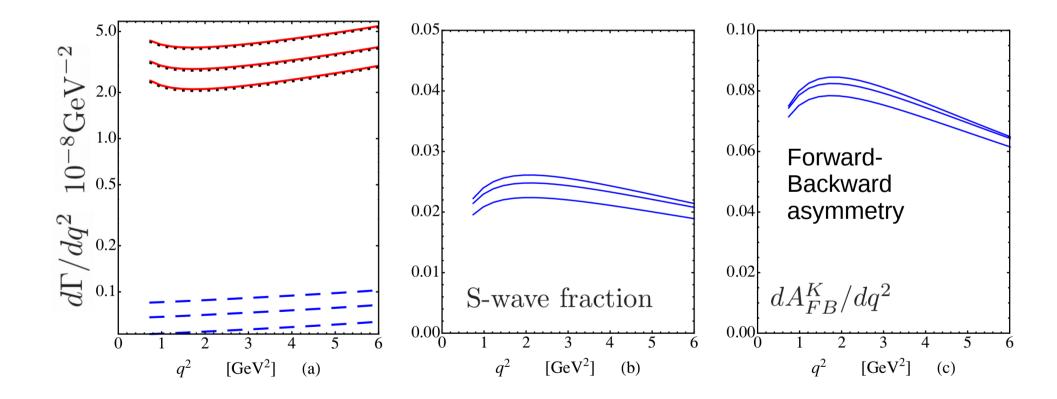
Conclusions

- Evaluation of the scalar, strangeness-changing form factor
- Twice-subtracted dispersion relation & matching to NLO CHPT
- Systematic influence from the ηK checked through a twochannel formulation (influence is generally small)
- Recent LHCb measurements are in agreement with predicted s-wave/p-wave ratio (~0.1)


(although within large uncertainties)

• Better partial waves needed to improve precision

Spare slides


Pion-pion and $K\overline{K}$ form factors

(Calculated with UCHpT, not dispersion relations)

Predicted observables for KK

$\bar{B}^0_s \to K^+ K^- l^+ l^-$

