

hadron spectrum collaboration hadspec.org

meson-meson scattering from lattice QCD

Jozef Dudek

finite volume spectrum ⇔ scattering amplitudes

lattice QCD computes a spectrum in a periodic cube

under **periodic boundary conditions**:

scattering continuum → discrete (volume dependent) spectrum

from the discrete spectrum, can determine scattering amplitudes

e.g. in the simplest elastic case $- E_n \rightarrow \delta_{\ell}(E_n)$

2

a review of the field: arXiv:1706.06223 (to appear in Rev.Mod.Phys)

WILLIAM & MARY

hadron spectrum collaboration

has pioneered the extension to the coupled-channel sector

several studies of meson-meson systems with (initially) m_{π} ~391 MeV

unique combination of ingredients:

large operator basis multiple volumes moving frames varied parameterisations of energy dependence exploration of pole singularities

D. Wilson R. Edwards R. Briceno C. Thomas

on the papers I'll show today

Jefferson Lab

not easy to study $\pi\eta$ scattering experimentally (isolating η exchange not practical)

but well known there's an $a_0(980)$ resonance at $K\overline{K}$ threshold decaying to $\pi\eta$

47 energy levels below $\pi \eta'$ threshold

PRD93 094506 (2016)

6

each point helps constrain scattering at that energy ...

7

47 energy levels below $\pi \eta'$ threshold

8

ILLIAM

& MARY

RESONANCE POLE SINGULARITY

rapid energy variation at $K\overline{K}$ threshold $t_{ij}(s) \sim \frac{c_i c_j}{s_0 - s}$

9

S-WAVE AMPLITUDES large number of K-matrix parameterisations 0.7 0.6 $K\overline{K} \to K\overline{K}$ 0.5 0.4 $\pi\eta \to \pi\eta$ $a_t \operatorname{Im} \sqrt{s_0}$ 0.3 $\widehat{i}\widehat{X}_{hh_{l}}$ 0.2 0 $\overline{a_t} \operatorname{Re}\sqrt{s_0}$ 0.24 0.16 0.20 0.1 $\pi\eta \to K\overline{K}$ a_0 resonance pole 0.20 0.21 0.22 0.23 0.18 0.19 $a_t E_{\mathsf{cm}}$ -0.04 2016 $a_t \operatorname{Im} c_i$ $t_{ij}(s) \sim \frac{c_i c_j}{s_0 - s}$ 0.2 0.1 $\underline{a_t} \operatorname{Re} c_t$ @ m_π~391 MeV -0.2 0.2 -0.1 a_0 ('980') resonance -0.1 $\sqrt{s_0} = 1177(27) \pm \frac{i}{2}49(33) \text{ MeV}$ $\frac{c_{K\bar{K}}}{K\bar{K}}$ = 1.3(4) $c_{\pi\eta}$ $2 m_K = 1098 \,\mathrm{MeV}$ -0.2

WILLIAM & MARY

10

 $\rightarrow \operatorname{Re}[s]$

└**→** Kk 89%

arXiv:1708.06667

11

SPECTRA IN THREE VOLUMES

57 energy levels

WILLIAM

& MARY

ISOSPIN-0 S-WAVE AMPLITUDES

arXiv:1708.06667

 $K\pi$ interactions | 15.Feb.2018 | meson-meson scattering ...

arXiv:1708.06667

13

*K*π interactions | 15.Feb.2018 | meson-meson scattering ...

WILLIAM

arXiv:1708.06667

14

two 'OZI'-like resonances

 $f_2^{\mathsf{a}} \sim u\bar{u} + d\bar{d} \qquad \qquad f_2^{\mathsf{b}} \sim s\bar{s}$

c.f. $f_2(1270)$ $f'_2(1525)$

role of three (and four) hadron channels not considered ... but reasonable (?) arguments they may be suppressed

*K*π interactions | 15.Feb.2018 | meson-meson scattering ...

WILLIAM

WILLIAM

& MARY

PRL113 182001 (2014) **15** PRD91 054008 (2015)

the first coupled-channel calculation in lattice QCD (in 2014)

P-wave contains <u>stable</u> vector meson *K*^{*} at threshold [fluke of the quark mass chosen]

but role of $\pi\pi K$ not considered!

WILLIAM

& MARY

WILLIAM

& MARY

PRL113 182001 (2014) PRD91 054008 (2015) **18**

low-lying meson spectrum

quark mass evolution of σ

 $m_{\pi} \sim 391 \text{ MeV} \rightarrow 236 \text{ MeV}$

PRL118 022002 (2017)

20

*K*π interactions | 15.Feb.2018 | meson-meson scattering ...

Jefferson Lab

state of play

WILLIAM

& MARY

what do we learn from these heavy *u,d* quark masses ?

demonstration of methodology

hints of 'evolution' of resonancesmild for $a_0(980)/f_0(980)$, drastic for σ , κ ?but can't directly compare with experimental data yet[but as $U_{\chi}PT$?]

are there advantages to the lattice approach ?

'stable pion target' — no need to extrapolate to the pion-exchange pole in *t* [is the beam momentum precise enough to achieve this?]

isospin separation is automatic

[are there independent linear combinations in the expt?]

can couple the resonances to external currents, study form-factors

state of play

what are the current limitations in the lattice approach

f.v. spectrum impacted by all open channels, can't 'turn things off' issue when **three-body channels** open — no complete formalism as yet

for πK taken literally, mainly restricted to below $\pi \pi K$ threshold

at physical pion mass, 633 - 772 MeV !

amplitude parameterizations may not build in all relevant constraints for cases with broad resonances, certainly room for improvement here but much experience (at least for one-channel case) in 'dispersive community'

Dec

hadron spectrum collaboration hadspec.org

JEFFERSON LAB

Raul Briceno Jozef Dudek Robert Edwards Balint Joo David Richards Frank Winter

TRINITY, DUBLIN

Michael Peardon Sinead Ryan David Wilson

CAMBRIDGE

Christopher Thomas Graham Moir

TATA, MUMBAI

Nilmani Mathur

WILLIAM

& MARY

MESON SPECTRUM

PRL103 262001 (2009)	<i>l=1</i>
PRD82 034508 (2010)	I=1, K*
PRD83 111502 (2011)	1=0
JHEP07 126 (2011)	cc
PRD88 094505 (2013)	<i>I=0</i>
JHEP05 021 (2013)	D, Ds
JHEP12 089 (2016)	$c\overline{c}, D, Ds$

BARYON SPECTRUM

PRD84 074508 (2011)	(N,Δ)*
PRD85 054016 (2012)	$(N,\Delta)_{hyb}$
PRD87 054506 (2013)	(NΞ)*
PRD90 074504 (2014)	Ω_{ccc}^*
PRD91 094502 (2015)	Ξ_{cc}^*

HADRON SCATTERING

PRD83 071504 (2011)	ππ Ι=2
PRD86 034031 (2012)	ππ Ι=2
PRD87 034505 (2013)	ππ I=1 ρ
PRL113 182001 (2014)	πK,ηK K*
PRD91 054008 (2015)	πK,ηK_ K*
PRD92 094502 (2015)	$\pi\pi, K\overline{K} \mid \rho$
PRD93 094506 (2016)	$\pi\eta, K\overline{K} \mid a_0$
JHEP10 011 (2016)	$D\pi, D\eta, D_s\overline{K}$
PRL118 022002 (2017)	ππ I=0 σ

MATRIX ELEMENTS

PRD90 014511 (2014) f_{π^*} PRD91 114501 (2015) $M' \to \gamma M$ PRL115 242001 (2015) $\gamma^* \pi \to \pi \pi$ PRD93 114508 (2016) $\gamma^* \pi \to \pi \pi$

LATTICE TECH.

 PRD79 034502 (2009)
 lattices

 PRD80 054506 (2009)
 distillation

 PRD85 014507 (2012)
 $\vec{p} > 0$

 JHEP (IN PRESS)
 tetraquarks

π*K I*=3/2

& MARY

 $g_{\rm phys.} = 5.5(2)$ PDG

Jefferson Lab

π*K I*=1/2

*K*π interactions | 15.Feb.2018 | meson-meson scattering ...

27

Jefferson Lab

π*K I*=1/2

*K*π interactions | 15.Feb.2018 | meson-meson scattering ...

Jefferson Lab

kaon beams

LASS, NPB296 493 (1988)

SU(3)_F & $\pi K/\eta K$

WILLIAM

& MARY

• SU(3) flavor symmetry consequences

• assuming a pure octet η

$$8 \otimes 8 = 1 \oplus \boxed{8_1} \oplus \boxed{8_2} \oplus 10 \oplus \overline{10} \oplus 27$$
$$\ell = \text{even odd}$$

 $\pi K:\eta K$

$$|\mathbf{8}_{1}, \ell = \text{even}\rangle = -\frac{\sqrt{5}}{10} \left[3\left(\sqrt{\frac{2}{3}} |K^{0}\pi^{+}\rangle + \sqrt{\frac{1}{3}} |K^{+}\pi^{0}\rangle\right) + |K^{+}\eta\rangle \right] \qquad 3:1$$

$$|\mathbf{8}_{2}, \ell = \text{odd}\rangle = \frac{1}{2} \left[\left(-\sqrt{\frac{2}{3}} |K^{0}\pi^{+}\rangle + \sqrt{\frac{1}{3}} |K^{+}\pi^{0}\rangle \right) - |K^{+}\eta\rangle \right]$$
 1:1

• varying the $\overline{\psi} \Gamma \psi$ content of the operator basis

к (kappa) pole with changing quark mass

WILLIAM & MARY

*K*π interactions | 15.Feb.2018 | meson-meson scattering ...

Jefferson Lab

isoscalar meson resonances – scalars

in some processes the **dip** is a **peak**

f₀ resonances ?

$f_0(980)$ large coupling to $K\overline{K}$

a K-matrix amplitude description

WILLIAM

& MARY

*K*π interactions | 15.Feb.2018 | meson-meson scattering ...

35

resonance content ?

a rigorous definition – pole singularity in a partial-wave amplitude $t_{ij}^{(\ell)}(s) \sim \frac{c_i c_j}{s_0 - s}$

- bound state:
$$s_0 = M^2$$

e.g. deuteron
 $\lim_{|m| \le 1} S^2$
- resonance: $\sqrt{s_0} = M - i\frac{1}{2}\Gamma$
e.g. ρ meson
 $\lim_{|m| \le 1} S^2$

WILLIAM & MARY

*K*π interactions | 15.Feb.2018 | meson-meson scattering ...

Jefferson Lab

sheets ?

WILLIAM

& MARY

complex *s*-plane actually multi-sheeted

unitarity $\operatorname{Im}[t_{ij}(s)] = -\delta_{ij} \rho_i(s)$

$$\rho_i(s) = \sqrt{1 - \frac{4m_i^2}{s}}$$

square-root branch-point at each threshold

sheets ?

complex *s*-plane actually multi-sheeted

unitarity $\operatorname{Im}[t_{ij}(s)] = -\delta_{ij} \rho_i(s)$

$$\rho_i(s) = \sqrt{1 - \frac{4m_i^2}{s}}$$

square-root branch-point at each threshold

sheets ?

$$m_R(f_0) = 1166(45) \text{ MeV}, \quad \Gamma_R(f_0) = 181(68) \text{ MeV}, \ m_R(a_0) = 1177(27) \text{ MeV}, \quad \Gamma_R(a_0) = 49(33) \text{ MeV}.$$

$$|c(a_0 \to K\overline{K})| \approx |c(f_0 \to K\overline{K})| \sim 850 \,\mathrm{MeV}$$

 $|c(a_0 \to \pi\eta)| \approx |c(f_0 \to \pi\pi)| \sim 700 \,\mathrm{MeV}.$

look very similar (in mass and couplings), but ...

'explaining' the sheet distribution

e.g. Flatté form
$$D(s)=m_0^2-s-ig_1^2\,
ho_1(s)-ig_2^2\,
ho_2(s)$$

has poles

$$\begin{split} \sqrt{s_0} &\approx m_0 \pm \frac{i}{2} \frac{g_2^2 \,\rho_2}{m_0} \left[\left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} - 1 \right] & \text{ on sheet II, if } \left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} > 1, \text{ or,} \\ \sqrt{s_0} &\approx m_0 \pm \frac{i}{2} \frac{g_2^2 \,\rho_2}{m_0} \left[1 - \left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} \right] & \text{ on sheet IV, if } \left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} < 1, \text{ and,} \\ \sqrt{s_0} &\approx m_0 \pm \frac{i}{2} \frac{g_2^2 \,\rho_2}{m_0} \left[1 + \left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} \right] & \text{ on sheet III, in all cases,} \end{split}$$

 $m_R(f_0) = 1166(45) \text{ MeV}, \quad \Gamma_R(f_0) = 181(68) \text{ MeV}, \ m_R(a_0) = 1177(27) \text{ MeV}, \quad \Gamma_R(a_0) = 49(33) \text{ MeV}.$

$$|c(a_0 \to K\overline{K})| \approx |c(f_0 \to K\overline{K})| \sim 850 \,\mathrm{MeV}$$

 $|c(a_0 \to \pi\eta)| \approx |c(f_0 \to \pi\pi)| \sim 700 \,\mathrm{MeV}.$

but larger phase-space for $\pi\pi$ than $\pi\eta$

a pole on **only** sheet II or sheet $IV \Rightarrow$ 'molecular resonance'?

 $K\pi$ interactions | 15.Feb.2018 | meson-meson scattering ...

41

on the other hand ...

an 'ordinary' resonance is expected to have 'mirror' poles:

e.g. Flatté form

$$D(s) = m_0^2 - s - ig_1^2 \rho_1(s) - ig_2^2 \rho_2(s)$$

has poles

$$\begin{split} \sqrt{s_0} &\approx m_0 \pm \frac{i}{2} \frac{g_2^2 \rho_2}{m_0} \left[\left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} - 1 \right] & \text{ on sheet II, if } \left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} > 1, \text{ or,} \\ \sqrt{s_0} &\approx m_0 \pm \frac{i}{2} \frac{g_2^2 \rho_2}{m_0} \left[1 - \left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} \right] & \text{ on sheet IV, if } \left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} < 1, \text{ and,} \\ \sqrt{s_0} &\approx m_0 \pm \frac{i}{2} \frac{g_2^2 \rho_2}{m_0} \left[1 + \left(\frac{g_1}{g_2} \right)^2 \frac{\rho_1}{\rho_2} \right] & \text{ on sheet III, in all cases,} \end{split}$$

poles on other sheets in the lattice calc ?

parameterization dependent distant poles on sheet III

looks more like one pole \Rightarrow 'molecular resonance'?

Jefferson Lab

finite-volume Flatté

WILLIAM & MARY

finite-volume 'dip-like'

WILLIAM

& MARY

meson-meson ops are vital

WILLIAM & MARY

σ pole with changing quark mass

*f*₀(980) dip – peak

tetraquark operators

generic local diquark operator

$$\delta_{RF}^{J[\Gamma]} = \langle \mathbf{3}r_a; \mathbf{3}r_b | Rr \rangle \langle F_a f_a; F_b f_b | Ff \rangle q_{r_a f_a}^T(C\Gamma) q_{r_b f_b}$$

no assumptions made at this point about good/bad diquarks

generic local tetraquark operator

$$\mathcal{T}_{\mathbf{1}[R_1R_2] F[F_1F_2]}^{J[\Gamma_1\Gamma_2]} = \langle J_1m_1; J_2m_2|Jm \rangle \langle R_1r_1; R_2r_2|\mathbf{1} \rangle \langle F_1f_1; F_2f_2|Ff \rangle \delta_{R_1F_1}^{J_1[\Gamma_1]} \bar{\delta}_{R_2F_2}^{J_2[\Gamma_2]} + \mathcal{C}/G\text{-parity symmetrisation } \dots$$

spins $J \leq 2$

Jefferson Lab

smeared quark fields, but otherwise **local**, certainly not sampling the whole lattice volume

(diquark construction just makes fermion antisymmetry manifest)

 $K\pi$ interactions | 15.Feb.2018 | meson-meson scattering ...

JHEP 1711 033 (2017)

color reps. $R = \overline{\mathbf{3}}, \mathbf{6}$

spins $J^p = 0^{\pm}, 1^{\pm}$

tetraquark operators — hidden charm *I*=1

all 'expected' meson-meson operators + several tetraquark operators

 $m_{\pi} \sim 391 \,\mathrm{MeV}$

WILLIAM

& MARY

52

JHEP 1711 033 (2017)

Chew-Mandlestam

 $[t^{-1}(s)]_{ij} = [K^{-1}(s)]_{ij} + \delta_{ij} I_i(s)$ 53

• equal mass case

$$\begin{split} I(s) &= -C(s) \\ C(s) &= C(0) + \frac{s}{\pi} \int_{s_{\text{th}}}^{\infty} ds' \sqrt{1 - \frac{s_{\text{th}}}{s'}} \frac{1}{s'(s'-s)} \\ C(s) &= \frac{\rho(s)}{\pi} \log \left[\frac{\rho(s) - 1}{\rho(s) + 1} \right] \quad \text{subtracting at threshold}} \quad C(s_{\text{th}}) = 0 \end{split}$$

• unequal mass case

WILLIAM

bound states & virtual bound-states

• so this form can support a b.s., a v.b.s. or neither

bound state versus virtual bound state

bound state versus virtual bound state

'single-hadron' kaon spectrum @ m_{π} ~391 MeV

57

& MARY

'single-hadron' kaon spectrum @ m_{π} ~391 MeV

PRD82 034508 (2010)

'single-hadron' kaon spectrum @ m_{π} ~391 MeV

PRD82 034508 (2010)

