Measurements of hadronic cross sections with the BABAR detector

Alessandra Filippi

INFN Torino

On behalf of the BABAR Collaboration

Kaon-Pion Interactions 2018 Workshop, JLAB, February 14-15, 2018

Outline

- Introduction and motivations
 - Evaluation of (g-2)_{μ} and $\alpha_{em}(\sqrt{s} = m_z)$
 - Study of light quark and charm spectroscopy: vector meson excitations, K* resonances, charmonium decay modes and branching fractions
- The BABAR cross sections database via ISR technique in e⁺e⁻ collisions
 - Channels with kaons & pions: cross sections and study of resonant substructures
 - $e^+e^- \rightarrow K^+K^-\pi^0$
 - $e^+e^- \rightarrow K_S K^{\pm} \pi^{\mp}$
 - $e^+e^- \rightarrow K_S K_L \pi^0$ NEW (2017)
 - $e^+e^- \rightarrow K_S K_L \pi^+ \pi^-$
 - $e^+e^- \rightarrow K_S K_S \pi^+\pi^-$
 - $e^+e^- \rightarrow K^+K^-\pi^+\pi^-$
 - $e^+e^- \rightarrow K^+K^-\pi^0\pi^0$
 - $e^+e^- \rightarrow K_S K_L \pi^0 \pi^0$ NEW (2017)
 - $e^+e^- \rightarrow K_S K^{\pm} \pi^{\mp} \pi^0$ NEW (2017)
- Conclusions

The BABAR experiment at PEP-II, SLAC

Initial State Radiation (ISR) at e⁺e⁻ colliders

ISR photon: emitted from the colliding e^+ or e^-

 e^+ $x = \frac{2E_{\gamma}^*}{\sqrt{s}}$ γ (ISR) $q = m_f^2 = s' = s(1-x)$

 $\sigma(e^+e^- \rightarrow f)$ extracted from $\sigma(e^+e^- \rightarrow \gamma f)$ through a QED radiation function W known at ~ 1% level

$$\frac{d\sigma_{e^+e^- \to f\gamma}(s, m_f)}{dm_f d\cos\theta_{\gamma}^*} = \frac{2m_f}{s} W(s, x, \theta_{\gamma}^*) \cdot \sigma_{e^+e^- \to f}(m_f)$$

- J^{PC} = 1⁻⁻ at production vertex
- continuous ISR spectrum: from threshold up to \sqrt{s} ~ 8 GeV
- comparable or better sensitivity compared to energy scans
- larger ISR luminosity
- γ_{ISR} selection: $E_{\gamma}^* > 3 \text{ GeV}$
- Reduced acceptance issues
- Kinematic fit for final state: good resolution

How to solve the $(g-2)_{\mu}$ discrepancy

3.5 σ long-standing discrepancy of theory vs experiment for the muon anomalous magnetic moment: $a_{\mu} = (g_{\mu}-2)/2$

M. Davier et al, EPJC71, 1515 (2011)

-100

-200

0

 $imes 10^{-11}$

-285±51 JN 09 (e⁺e⁻ -299+65

Davier et al. 09/1 (τ-based) -157±52 Davier et al. 09/1 (e⁺e⁻) -312±51

-300

a^{exp}

Dominant correction and error from the LO hadronic term

- Most precise predictions from low-energy e⁺e⁻→ hadrons exclusive cross sections and dispersion relations
- Wide program of measurements at BABAR

$$a_{\mu}^{had,LO} = \frac{\alpha^2(0)}{3\pi^2} \int_{m_{\pi}^2}^{\infty} ds \frac{K(s)}{s} \cdot R(s) \stackrel{\approx \sigma(e^+e^- \to hadrons)}{s}$$

low energy dominance

BABAR exclusive σ_{had} measurements

- 2π dominates for $\sqrt{s} < 1$ GeV
- 4π dominates for
 1 < √s < 2 GeV
- 6π dominates for $\sqrt{s} > 2$ GeV

- Extended covered energy range
- Larger precision
- One experiment for all measurements

- Long list of published papers, > 20 studied channels
- Last channels with kaons recently published (2017)

Kaon identification in BABAR

- K^{\pm}
 - standard charged particle pid using specific energy loss, time of flight, Cherenkov radiation
 - 80% efficiency, 2% misidentification rate

- reconstructed through pairs of opposite charged tracks with common displaced vertex: $K_S^0 \rightarrow \pi^+ \pi^-$

- K
 - Identified via an isolated energy cluster in the calorimeter with cluster shape not consistent with a photon
 - Validated via

$$e^+e^- \rightarrow \gamma \phi \rightarrow \gamma K^0_S K^0_L$$

$K\overline{K}\pi$ final states

$e^+e^- \rightarrow K_S K^{\pm} \pi^{\mp}$: cross section

- Event reconstruction: γ_{ISR} , K_S^0
- Clear observation of J/ψ
- No evidence for Y(4260), upper limit at 90% C.L. $\Gamma_{ee}^{Y(4260)} \cdot \mathcal{B}_{K_{S}^{0}K^{\pm}\pi^{\mp}}^{Y(4260)} = 0.5 \text{ eV}$
- Excess of events observed at ~ 4.2 GeV: 3.5σ fluctuation

BABAR Coll., PRD77(2008), 092002

$e^+e^- \rightarrow K_S K^{\pm} \pi^{\mp}$: Dalitz analysis

- Main contribution given by K*(892)[±]K[∓] and K*(892)⁰K_s or K*₂(1430)[±]K[∓] and K*₂(1430)⁰K_s
 - Both charged and neutral K^*
 - Asymmetric Dalitz plot
- Small contribution from $KK_1(1410)$ (small width in $K\overline{K}\pi$)
- From Dalitz plot analysis the isovector and isoscalar components of the cross section can be extracted
 - Charged/neutral K* modeled differently by interference effects
 - Dominant isoscalar component with clear resonant behavior (ϕ (1680))
 - Isovector component: one broad resonance only ($\rho(1450)$)

• Main contribution to $K_s \pi^{\mp}$ above 2 GeV given by $K^*_2(1430)^{\pm}$

BABAR Coll., PRD77(2008), 092002

$e^+e^- \rightarrow K^+K^-\pi^0$

- Clear observation of J/ψ
- No evidence for *Y(4260)*, upper limit of decay BR at 90% C.L.: 0.6 eV

- Resonant substructures:
 - Final state produced through K*(892)[±] K[∓] or K*₂(1430)[±] K[∓]
 - neutral K* only, symmetric Dalitz plot
 - $\phi \pi^0$ final state: observation of *C(1480)*? Of ρ (1700)? Of ρ (1900) as a dip?

$e^+e^- \rightarrow K_S K_L \pi^0$: cross section

- Event reconstruction: γ_{ISR} , $\pi^0 \rightarrow \gamma\gamma$, K_S^0
- Invariant mass resolution of the final state: 25 MeV
- First measurement of this process: 3700 events
- First observation of $J/\psi \rightarrow K_S K_L \pi^0$
- Systematic uncertainty: ~10% at peak, ~ 30% at 3 GeV

$e^+e^- \rightarrow K_S K_L \pi^0$: resonant substructures

- Fit of background subtracted (K_s π⁰) and (K_L π⁰) invariant mass spectra with coherent resonant+non-resonant contributions
 - Dominant $K^{*0}\overline{K}^0$ + c.c.
 - mostly K*(892)⁰K
 ⁰ + small K*(1430)⁰ K
 ⁰

- Cross section saturated by K*(892)⁰K⁰ + c.c.
- Small contribution from $\phi\pi^0$
 - Possible resonant structure I=1 @ 1.6 GeV?

$K\overline{K}\pi\pi$ final states

$e^+e^- \rightarrow K_S K_L \pi^+\pi^-$

- Events with two tracks (not kaons) not coming from K_S but consistent with the same decay vertex
- Large background from ISR and non-ISR multihadron events
- Systematic uncertainty: ~10% for E*<2 GeV, ~ 30% at 2.5-3 GeV, 100% above 3.4 GeV
- Resonant substructure:
 - Clear bands of $K^*(892)^{\pm}$ and indications of $K^*_2(1430)^{\pm}$
 - Correlated production of $K^{*}(892)^{-}K^{*}(892)^{-}$ and $K^{*}(892)^{\pm}K^{*}_{2}(1430)^{\mp}$

$e^+e^- \rightarrow K_S K_S \pi^+\pi^-$

- Only one neutral particle: ISR photon
- Systematic uncertainty dominated by the uncertainty of the background: ~5% at the peak, 50-70% at higher energies
- Resonant substructure:
 - Clear bands of K*(892) $^{\pm}$ and indications of K*₂(1430) $^{\pm}$
 - Correlated production of K*(892)⁺K*(892)⁻, dominant contribution below 2.5 GeV
 - Number of correlated K*(892)⁺K*(892)⁻ in K_SK_S $\pi^+\pi^-$ vs K_SK_S $\pi^+\pi^-$ vs K⁺K⁻ $\pi^0\pi^0$ consistent with 1:2:1
 - no significant signal for $K^*(892)^{\pm}K^*_2(1430)^{\mp}$, small for $K^*_2(1430)^{\pm}K_S \pi^{\mp}$

$e^+e^- \rightarrow K^+K^-\pi^+\pi^-$: cross section

- Systematic uncertainty: ~20% below 1.6 GeV,~2% in the 1.6-3.3 GeV range, ~ 10% in the range 3.3-5 GeV
- Cross section systematically lower than DM1 measurements
- Narrow peaks from J/ψ , $\psi(2S)$ + possibly other structures (due to thresholds for intermediate states?)
- Mass resolution: 4.2 MeV below 2.5 GeV, 5.5 MeV above
- Resonant substructure: plenty of intermediate states

BABAR Coll., PRD86(2012), 012008

(ь)

$e^+e^- \rightarrow K^+K^-\pi^+\pi^-$: resonant substructure

- Clear signal of $K^{*}(892)^{0}$ and $K^{*}_{2}(1430)^{0}$
 - Marginal contributions from K*(1410)⁰ and/or $K^*_0(1430)^0$ (other $K \pm \pi^{\mp}$ decays)

- $K^{*}(892)^{0} \pi^{\pm}$ invariant mass:
 - Evidence of contributions from $K_1(1270)$ and K₁(1400)
- Events/0.02 GeV/c² BABAR 10000 5000 K * (1430) $m(K^{+-}\pi^{-+}) (GeV/c^2)$ BABAR 2000 <mark>۲ ₁(127</mark>0 Events/0.033 GeV/c² 1500 1000 $K_{1}(1400)$ 500 0 1.5 2 2.5 $m(K^*\pi^{+-}) (GeV/c^2)$

15000

- Events without K*(892)⁰K π :
 - Evidence for $K_1(1270)$ and $K_1(1400)$ decaying into K_ρ(770)
 - No indications of additional $\pi^+\pi^-$ structures

$e^+e^- \rightarrow K^+K^-\pi^0\pi^0$

- Systematic uncertainty: ~7% at low mass, ~16% above 3 GeV
- Mass resolution: 8.8 MeV, increase to 11.2 MeV in the 2.5-3.5 GeV range
- Resonant substructure:
 - Large contributions from K*(892)[±]
 - K*(1430)[±]/K*(892)[±] consistent with the neutral K* production in K ⁺K ⁻ $\pi^+\pi^-$
 - Clear correlated production observed for K*(892)⁺K*(892)⁻ and K*(892)⁺K*₂(1430)⁻
 - No evidence of resonant production in K⁺K⁻ π^0 or K[±] $\pi^0\pi^0$

$e^+e^- \rightarrow K_S K_L \pi^0 \pi^0$

- First cross section measurement
- First observation of $J/\psi \rightarrow K_S K_L 2\pi^0$ (possibly $\psi(2S)$)
- Systematic uncertainty: ~25% at peak, ~60% at 2 GeV
- Dominant contribution from $K^*(892)K\pi$ intermediate state
 - Evident signals from K*(892)⁰ (large background)
 - No significant contribution from $K^*(892)^0 \overline{K}^*(892)^0$

21

Charmonium region: decay branching ratios

• Many new J/ψ and $\psi(2S)$ decay channels observed

35

• Branching ratio determination based on cross sections:

 $m(K_{s}K_{L}\pi^{0}) (GeV/c^{2})$

 $\sigma(e^+e^- \to c\bar{c} \to X) \sim \Gamma(c\bar{c} \to e^+e^-) \cdot \mathcal{B}(c\bar{c} \to X)$

	Measured Measured		Calculated Branching Fractions (10^{-3})	
	Quantity	Value (eV)	This work	Previous
$\Gamma_{ee}^{J/\psi}$	$\cdot \mathcal{B}_{J/\psi \to K^0_S K^0_L \pi^0}$	$11.4 \pm 1.3 \pm 0.6$	$2.06\ \pm 0.24 \pm 0.10$	_
$\Gamma_{ee}^{J/\psi}$	$\cdot \mathcal{B}_{J/\psi \to K_S^0 K_L^0 \eta}$	$8.0 \pm 1.8 \pm 0.4$	$1.45\ \pm 0.32 \pm 0.08$	_
$\Gamma_{ee}^{J/\psi}$	$\cdot \mathcal{B}_{J/\psi \to K_S^0 K_L^0 \pi^0 \pi^0}$	$10.3 \pm 2.3 \pm 0.5$	$1.86\ \pm 0.43 \pm 0.10$	_
$\Gamma_{ee}^{J/\psi}$	$\cdot \mathcal{B}_{J/\psi \to K^*(892)^0 \overline{K}^0 + c.c.} \cdot \mathcal{B}_{K^*(892)^0 \to K^0 \pi^0}$	$6.7 \pm 0.9 \pm 0.4$	$1.20\ \pm 0.15 \pm 0.06$	_
$\Gamma_{ee}^{J/\psi}$	$\cdot \mathcal{B}_{J/\psi \to K_{2}^{*}(1430)^{0}\overline{K}^{0}+c.c.} \cdot \mathcal{B}_{K_{2}^{*}(1430) \to K^{0}\pi^{0}}$	$2.4 \pm 0.7 \pm 0.1$	$0.43\ \pm 0.12 \pm 0.02$	< 4 [26]
$\Gamma_{ee}^{\psi(2S)}$	$\cdot \mathcal{B}_{\psi(2S) \to K^0_S K^0_L \pi^0}$	< 0.7	< 0.3	_
$\Gamma_{ee}^{\psi(2S)}$	$\cdot \mathcal{B}_{\psi(2S) \to K^0_S K^0_L \eta}$	$3.14\ \pm 1.08\ \pm 0.16$	$1.33\ \pm 0.46 \pm 0.07$	_
$\Gamma_{ee}^{\psi(2S)}$	$\cdot \mathcal{B}_{\psi(2S) \to K^0_S K^0_L \pi^0 \pi^0}$	$2.92\ \pm 1.27\ \pm 0.15$	$1.24\ \pm 0.54 \pm 0.06$	—

 $m(K_eK_1\pi^0\pi^0)$ (GeV/c²

 $e^+e^- \rightarrow K_S K^{\pm} \pi^{\overline{\tau}} \pi^0$

0.5 0.75

1.25

- Systematic uncertainty: ~6% (E*< 2 GeV) -~12% (E*>3 GeV)
- Very rich intermediate state composition
 - Single, double K*(892)⁰ production (charged and neutral)
 - K^{*}₂(1430), K^{*}₀(1430)
 - ρ (770) resonance

10²

10

1.25

0.5

 $m(K_S\pi^{\nu})$ (GeV/c²)

$e^+e^- \rightarrow K^*(892)K\pi, K_SK\pi$

Neutral/charged K*(892): dominant contribution

• Large $K_S K^{\pm} \rho^{\mp}(770)$ fraction

Some events may come from $K_1 \rightarrow K\rho^{\mp}$ (K₁(1270), K₁(1400), K₁(1650))

Total $e^+e^- \rightarrow K\overline{K}\pi$, $K\overline{K}\pi\pi$ cross sections

- Cross sections for all channels measured by BABAR (except with $2K_L$)
 - $K\overline{K}\pi$: ~12% of total cross section @ E* ~1.6 GeV
 - $K\overline{K}\pi\pi$: ~25% of total cross section @ E* ~2 GeV
- Symmetry relationships no more necessary
- Significant improvement on $(g-2)_{\mu}$ determination : 30% \Rightarrow 6% precision

Conclusions

 The use of ISR technique at *B*-factories was pioneered by *BABAR* and led to a wealth of precision measurements of many exclusive hadronic cross sections

• $\sigma(e^+e^- \rightarrow hadrons)$:

- Most precise determination of the LO hadronic contribution to the muon magnetic momentum anomaly
 - Improvement in precision of $a_{\mu}^{had,LO}$ ~20%
- New information on hadron dynamics and light hadron spectrum
- First measurements of never observed decay channels
- First observations of charmonium decay modes and branching fractions
- Study of new resonances and decay modes
- New experimental inputs awaited from new generation of charm and *B*-factories

backup slides

$e^+e^- \rightarrow K_S K_L \eta$ cross section

- Event reconstruction: γ_{ISR} , $\eta \rightarrow \gamma \gamma$ in proper mass window,
- First cross section measurement
- First observation of $J/\psi \rightarrow K_S K_L \eta$
- Systematic uncertainty: ~25% at peak, ~ 60% at 2 GeV
- $\varphi\eta$ channel dominating the $K_{S}K_{L}\eta$ channel
 - No significant J/ψ signal
 - No significant structures in $K_S \eta$ or $K_L \eta$

 $e^+e^- \rightarrow K_S K^{\pm} \pi^{\mp} \eta$

- First cross section measurement
- First observation of narrow $J/\psi \rightarrow K_S K^{\pm} \pi^{\mp} \eta$
- Systematic uncertainty: 12% below 3 GeV, 19% for E*> 3 GeV
- No significant structure observed in $K^{\pm}K_{s}$, $K^{\pm}\eta$, $K_{s}\eta$
- Dominant K*(892) ± + K*₂(1430) ±
- Suppression of neutral vs charged $K^*(892)$, no hint of $K^*_2(1430)^0$

