

Pion-kaon final-state interactions in heavy-meson decays

Bastian Kubis

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics Universität Bonn, Germany

> Pion–Kaon Interactions Workshop JLab, February 15th 2018

Outline

What's not to like about the isobar model?

Form factors and final-state interactions

Dispersion relations for three-body decays

• an ideal test case: $\omega/\phi \rightarrow 3\pi$

Niecknig, BK, Schneider 2012

• $D^+ \to \bar{K}\pi\pi^+$

Niecknig, BK 2015, 2017

Summary / Outlook

CP violation in weak interactions

CP violation in partial widths $\Gamma(P \to f) \neq \Gamma(\bar{P} \to \bar{f})$

- at least two interfering decay amplitudes
- different weak (CKM) phases
- different strong (final-state-interaction) phases

CP violation in weak interactions

CP violation in partial widths $\Gamma(P \to f) \neq \Gamma(\bar{P} \to \bar{f})$

- at least two interfering decay amplitudes
- different weak (CKM) phases
- different strong (final-state-interaction) phases

three-body decays: $D \rightarrow 3\pi, \pi\pi K$

- Dalitz plot

 density distribution in two kinematical variables
- resonances —> rapid phase variation enhances CP-violation in parts of the decay region
- how well do we control strong phase motion with information from hadron physics?

Crystal Barrel

Amplitude analyses in Dalitz plots

The traditional picture: isobar model / Breit–Wigner resonances

Amplitude analyses in Dalitz plots

The traditional picture: isobar model / Breit–Wigner resonances

Amplitude analyses in Dalitz plots

The traditional picture: isobar model / Breit–Wigner resonances

1200

1400

Two-body decays: form factors

• just two particles in final state: form factor; from unitarity:

 $\frac{1}{2i}\operatorname{disc} F_{I}(s) = \operatorname{Im} F_{I}(s) = F_{I}(s) \times \theta(s - 4M_{\pi}^{2}) \times \sin \delta_{I}(s) e^{-i\delta_{I}(s)}$

 \rightarrow final-state theorem: phase of $F_I(s)$ is just $\delta_I(s)$ Watson 1954

Two-body decays: form factors

• just two particles in final state: form factor; from unitarity:

 $\frac{1}{2i}\operatorname{disc} F_{I}(s) = \operatorname{Im} F_{I}(s) = F_{I}(s) \times \theta(s - 4M_{\pi}^{2}) \times \sin \delta_{I}(s) e^{-i\delta_{I}(s)}$

 \longrightarrow final-state theorem: phase of $F_I(s)$ is just $\delta_I(s)$ Watson 1954

• solution to this homogeneous integral equation known:

$$F_{I}(s) = P_{I}(s)\Omega_{I}(s) , \quad \Omega_{I}(s) = \exp\left\{\frac{s}{\pi}\int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{I}(s')}{s'(s'-s)}\right\}$$

 $P_I(s)$ polynomial, $\Omega_I(s)$ Omnès function

Omnès 1958

• today: high-accuracy $\pi\pi$, πK phase shifts available Ananthanarayan et al. 2001, García-Martín et al. 2011 / Büttiker et al. 2004

Pion vector form factor vs. Omnès representation

- linear polynomial below 1 GeV: $F_{\pi}^{V}(s) \approx (1 + 0.1 \,\mathrm{GeV}^{-2}s)\Omega(s)$
- above: inelastic resonances ρ' , ρ'' ...

Three-body decays: phase universality??

• extraction of πK S-wave from $D^+ \rightarrow K^- \pi^+ \pi^+$ seen to have different phase from elastic scattering: E791 2006

Simpler three-body decays: $\omega/\phi ightarrow 3\pi$

Naive: sum of 3 Breit–Wigners (ρ^+ , ρ^- , ρ^0)

+ constant background term

Simpler three-body decays: $\omega/\phi ightarrow 3\pi$

Decay amplitude can be decomposed into single-variable functions

 $\mathcal{M}(s,t,u) = i\epsilon_{\mu\nu\alpha\beta}\epsilon^{\mu}p_{\pi^{+}}^{\nu}p_{\pi^{-}}^{\alpha}p_{\pi^{0}}^{\beta}\left\{\mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)\right\}$

 \longrightarrow only odd partial waves; neglect F-waves and higher

Simpler three-body decays: $\omega/\phi ightarrow 3\pi$

Decay amplitude can be decomposed into single-variable functions

 $\mathcal{M}(s,t,u) = i\epsilon_{\mu\nu\alpha\beta}\epsilon^{\mu}p_{\pi^{+}}^{\nu}p_{\pi^{-}}^{\alpha}p_{\pi^{0}}^{\beta}\left\{\mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)\right\}$

 \rightarrow only odd partial waves; neglect F-waves and higher

• inhomogeneities $\hat{\mathcal{F}}(s)$: partial-wave projections of $\mathcal{F}(t)$, $\mathcal{F}(u)$

$$\mathcal{F}(s) = a \,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)|} \right\}$$
$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{-1}^1 dz \,(1-z^2) \mathcal{F}(t(s,z)) \qquad \text{Anisovich, Leutwyler 1998}$$

 \longrightarrow left- and right-hand cuts iterated self-consistently

$$\mathcal{F}(s) = a \,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')| (s' - s - i\epsilon)} \right\}$$
$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{-1}^{1} dz \,(1 - z^2) \mathcal{F}(t(s, z))$$

$$\mathcal{F}(s) = a \,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')| (s' - s - i\epsilon)} \right\}$$
$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{t_-(s)}^{t_+(s)} dt \left(\frac{dz}{dt}\right) \left(1 - z(t)^2\right) \mathcal{F}(t)$$

• complication: analytic continuation in decay mass M_V required

•
$$M_V < 3M_\pi$$
:
okay

$$\mathcal{F}(s) = a \,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')| (s' - s - i\epsilon)} \right\}$$
$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{t_-(s)}^{t_+(s)} dt \left(\frac{dz}{dt}\right) \left(1 - z(t)^2\right) \mathcal{F}(t)$$

- complication: analytic continuation in decay mass M_V required
- $M_V>3M_\pi$:

path deformation required

Khuri, Treiman 1960

$$\mathcal{F}(s) = a \,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')| (s' - s - i\epsilon)} \right\}$$
$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{t_-(s)}^{t_+(s)} dt \left(\frac{dz}{dt}\right) \left(1 - z(t)^2\right) \mathcal{F}(t)$$

- complication: analytic continuation in decay mass M_V required
- $M_V > 3M_{\pi}$:

path deformation required

 \rightarrow generates 3-particle cuts

 \longrightarrow no simple phase relation

Khuri, Treiman 1960

$$\mathcal{F}(s) = a \,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'} \frac{\sin \delta_1(s') \hat{\mathcal{F}}(s')}{|\Omega_1(s')| (s'-s)} \right\}$$

• $\omega \rightarrow 3\pi$ vs. $\phi \rightarrow 3\pi$: crossed-channel effects depend on decay mass!

Niecknig, BK, Schneider 2012

$$\mathcal{F}(s) = a \,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'} \frac{\sin \delta_1(s') \hat{\mathcal{F}}(s')}{|\Omega_1(s')| (s'-s)} \right\}$$

• $\omega \rightarrow 3\pi$ vs. $\phi \rightarrow 3\pi$: crossed-channel effects depend on decay mass!

Niecknig, BK, Schneider 2012

Extension to higher energies: $D, B \rightarrow 3\pi$ etc.?

• well-defined high-energy limit of Khuri–Treiman amplitudes:

Extension to higher energies: $D, B \rightarrow 3\pi$ etc.?

• well-defined high-energy limit of Khuri–Treiman amplitudes:

Extension to higher energies: $D, B \rightarrow 3\pi$ etc.?

• well-defined high-energy limit of Khuri–Treiman amplitudes:

Extension to higher energies: $D, B \rightarrow 3\pi$ etc.?

• well-defined high-energy limit of Khuri–Treiman amplitudes:

Extension to higher energies: $D, B \rightarrow 3\pi$ etc.?

• well-defined high-energy limit of Khuri–Treiman amplitudes:

Extension to higher energies: $D, B \rightarrow 3\pi$ etc.?

• well-defined high-energy limit of Khuri–Treiman amplitudes:

- \rightarrow third-particle interaction vanishes at high decay masses
- \longrightarrow warning: naive continuation, inelastic effects neglected...

- Cabibbo-favoured decays, several experiments with good statistics for $D^+ \rightarrow K^- \pi^+ \pi^+$ E791 2006, CLEO 2008, FOCUS 2009
- coupled to $D^+ \to \bar{K}^0 \pi^0 \pi^+$ BESIII 2014

- Cabibbo-favoured decays, several experiments with good statistics for $D^+ \rightarrow K^- \pi^+ \pi^+$ E791 2006, CLEO 2008, FOCUS 2009
- coupled to $D^+ \to \bar{K}^0 \pi^0 \pi^+$ BESIII 2014

Partial waves:

• Cabibbo-favoured decays, several experiments with good statistics for $D^+ \rightarrow K^- \pi^+ \pi^+$ E791 2006, CLEO 2008, FOCUS 2009 • coupled to $D^+ \rightarrow \bar{K}^0 \pi^0 \pi^+$

pled to $D^+ \rightarrow K^0 \pi^0 \pi^+$ BESIII 2014

Partial waves:

 \rightarrow exotic partial waves, weak, repulsive

• Cabibbo-favoured decays, several experiments with good statistics for $D^+ \rightarrow K^- \pi^+ \pi^+$ E791 2006, CLEO 2008, FOCUS 2009 • coupled to $D^+ \rightarrow \bar{K}^0 \pi^0 \pi^+$

• coupled to
$$D^+ \to K^0 \pi^0 \pi^+$$

BESIII 2014

• Cabibbo-favoured decays, several experiments with good statistics for $D^+ \rightarrow K^- \pi^+ \pi^+$ E791 2006, CLEO 2008, FOCUS 2009 • coupled to $D^+ \rightarrow \bar{K}^0 \pi^0 \pi^+$

BESIII 2014

Partial waves:

 pion-pion
 $P_{\pi\pi}^1$ 2
 $S_{\pi\pi}^2$ 2 \rightarrow 0

 pion-kaon
 $S_{\pi K}^{1/2}$ 4
 $S_{\pi K}^{3/2}$ 2 \rightarrow 0

 $P_{\pi K}^{1/2}$ 1
 $P_{\pi K}^{3/2}$ 0

 $(D_{\pi K}^{1/2})$ 0

subtraction constants \rightarrow using $s + t + u = \text{const.} \rightarrow 7$ altogether

Full system of dispersion relations

$$\begin{split} \mathcal{F}_{0}^{2}(u) &= \Omega_{0}^{2}(u) \frac{u^{2}}{\pi} \int_{u_{th}}^{\infty} \frac{\mathrm{d}u'}{u'^{2}} \frac{\hat{\mathcal{F}}_{0}^{2}(u') \sin \delta_{0}^{2}(u')}{|\Omega_{0}^{2}(u')| (u'-u)} \\ \mathcal{F}_{1}^{1}(u) &= \Omega_{1}^{1}(u) \left\{ c_{0} + c_{1}u + \frac{u^{2}}{\pi} \int_{u_{th}}^{\infty} \frac{\mathrm{d}u'}{u'^{2}} \frac{\hat{\mathcal{F}}_{1}^{1}(u') \sin \delta_{1}^{1}(u')}{|\Omega_{1}^{1}(u')| (u'-u)} \right\} \\ \mathcal{F}_{0}^{1/2}(s) &= \Omega_{0}^{1/2}(s) \left\{ c_{2} + c_{3}s + c_{4}s^{2} + c_{5}s^{3} + \frac{s^{4}}{\pi} \int_{s_{th}}^{\infty} \frac{\mathrm{d}s'}{s'^{4}} \frac{\hat{\mathcal{F}}_{0}^{1/2}(s') \sin \delta_{0}^{1/2}(s')}{|\Omega_{0}^{1/2}(s')| (s'-s)} \right\} \\ \mathcal{F}_{0}^{3/2}(s) &= \Omega_{0}^{3/2}(s) \left\{ \frac{s^{2}}{\pi} \int_{s_{th}}^{\infty} \frac{\mathrm{d}s'}{s'^{2}} \frac{\hat{\mathcal{F}}_{0}^{3/2}(s') \sin \delta_{0}^{3/2}(s')}{|\Omega_{0}^{3/2}(s')| (s'-s)} \right\} \\ \mathcal{F}_{1}^{1/2}(s) &= \Omega_{1}^{1/2}(s) \left\{ c_{6} + \frac{s}{\pi} \int_{s_{th}}^{\infty} \frac{\mathrm{d}s'}{s'} \frac{\hat{\mathcal{F}}_{1}^{1/2}(s') \sin \delta_{1}^{1/2}(s')}{|\Omega_{1}^{1/2}(s')| (s'-s)} \right\} \\ \mathcal{F}_{2}^{1/2}(s) &= \Omega_{2}^{1/2}(s) \frac{1}{\pi} \int_{s_{th}}^{\infty} \mathrm{d}s' \frac{\hat{\mathcal{F}}_{2}^{1/2}(s') \sin \delta_{2}^{1/2}(s')}{|\Omega_{2}^{1/2}(s')| (s'-s)} \end{split}$$

• D-wave contributions to the inhomogeneities neglected

• system linear in subtractions:
$$\mathcal{M}(s, t, u) = \sum_{i=0}^{o} c_i \underbrace{\mathcal{M}_i(s, t, u)}_{\text{basis functions}}$$

6

- prominent $K^*(892)$ and $\rho(770)$ (in $K_S \pi^0 \pi^+$) signals
- phase space limit: $\sqrt{s}, \sqrt{t} \le M_D M_\pi \approx 1.73 \,\mathrm{GeV}$

- prominent $K^*(892)$ and $\rho(770)$ (in $K_S \pi^0 \pi^+$) signals
- phase space limit: $\sqrt{s}, \sqrt{t} \le M_D M_\pi \approx 1.73 \,\mathrm{GeV}$
- elastic approximation: onset of inelasticity in $S_{\pi K}^{1/2}$ for $\sqrt{s} \ge M_{\eta'} + M_K \approx 1.45 \,\text{GeV}$

 \longrightarrow fit deteriorates beyond; exclude this region for now

- prominent $K^*(892)$ and $\rho(770)$ (in $K_S \pi^0 \pi^+$) signals
- phase space limit: $\sqrt{s}, \sqrt{t} \le M_D M_\pi \approx 1.73 \,\mathrm{GeV}$
- elastic approximation: onset of inelasticity in $S_{\pi K}^{1/2}$ for $\sqrt{s} \ge M_{\eta'} + M_K \approx 1.45 \,\text{GeV}$

 \longrightarrow fit deteriorates beyond; exclude this region for now

- fits to CLEO and FOCUS $D^+ \rightarrow K^- \pi^+ \pi^+$ Niecknig, BK 2015
- BESIII $D^+ \to \bar{K}_S \pi^0 \pi^+$ and combined fits Niecknig, BK 2017

(Slices through) Dalitz plot $D^+ o K^- \pi^+ \pi^+$

• Omnès fit: $\chi^2/\mathrm{ndof} \approx 1.3$

("isobar model" + non-resonant background waves)

- \longrightarrow but: very implausible fit fractions (huge cancellations)
- full dispersive solution: $\chi^2/\text{ndof} \approx 1.2$
- including $D_{\pi K}^{1/2}$ wave (no add. parameter) $\longrightarrow \chi^2/\mathrm{ndof} \approx 1.1$
- 7 complex subtraction constants -1 phase -1 normalisation

 $D^+ o K^- \pi^+ \pi^+$ fits

theoretical Dalitz plot

fit fractions

CLEO	without D-wave	with <i>D</i> -wave
\mathcal{F}_0^2	$(37\pm23)\%$	$(8\pm3)\%$
$\mathcal{F}_0^{1/2}$	$(190 \pm 60)\%$	$(72 \pm 12)\%$
$\mathcal{F}_1^{1/2}$	$(11 \pm 3)\%$	$(10\pm2)\%$
$\mathcal{F}_0^{3/2}$	$(65 \pm 35)\%$	$(16 \pm 3)\%$
$\mathcal{F}_2^{1/2}$	—	$(0.1 \pm 0.05)\%$
$\chi^2/{\sf do}^2$	1.2	1.1

- without *D*-wave: large destructive interference between πK *S*-waves
- with *D*-wave: no additional parameter; small, but large effects on other fit fractions
- very similar FOCUS fit results
- uncertainties include input phase shift error estimates

$D^+ o K_S \pi^0 \pi^+$ fits

theoretical Dalitz plot

fit fractions

BESIII	without D-wave	with <i>D</i> -wave
\mathcal{F}_{0}^{2}	$(5\pm2)\%$	$(5\pm0.3)\%$
\mathcal{F}_1^1	$(21\pm5)\%$	$(16\pm3)\%$
$\mathcal{F}_0^{1/2}$	$(39\pm5)\%$	$(43 \pm 4)\%$
$\mathcal{F}_1^{1/2}$	$(9\pm0.5)\%$	$(7\pm2)\%$
$\mathcal{F}_0^{3/2}$	$(6\pm2)\%$	$(9\pm3)\%$
$\mathcal{F}_2^{1/2}$	_	$(1.5 \pm 0.05)\%$
$\chi^2/{ m dof}$	1.27	1.35

- similar fit fractions with and without *D*-wave
- BESIII fit constrains subtraction constants well
- *but:* fitted constants not well compatible with $D^+ \rightarrow K^- \pi^+ \pi^+$ combined fits with bad χ^2 /dof

Combined fits

Combined CLEO/FOCUS/BESIII data fit

- without *D*-wave: $\chi^2/dof = 1.7 \pm 0.1$
- with (parameter-free) *D*-wave: $\chi^2/dof = 2.5 \pm 0.1$???
- oversubtract D-wave:

 $\mathcal{F}_2^{1/2}(s) \to$ $\mathcal{F}_{2}^{1/2}(s) + c_7 \Omega_{2}^{1/2}(s)$

- *D*-wave more flexible independent coupling
- combined $\chi^2/dof \approx 1.2$ comparable to individual experimental fits FOCUS 2009, BESIII 2014

	$K^-\pi^+\pi^+$	$ar{K}^0\pi^0\pi^+$
\mathcal{F}_{0}^{2}	$(3\pm2)\%$	$(1\pm 0.3)\%$
\mathcal{F}_1^1		$(21\pm3)\%$
$\mathcal{F}_0^{1/2}$	$(53\pm3)\%$	$(41\pm3)\%$
$\mathcal{F}_1^{1/2}$	$(11\pm1)\%$	$(8\pm1)\%$
$\mathcal{F}_0^{3/2}$	$(0.6\pm0.1)\%$	$(7\pm1)\%$
$\mathcal{F}_2^{1/2}$	$(0.3\pm0.1)\%$	$(0.3\pm0.1)\%$
$\chi^2/{\sf dof}$	1.2	1.2

fit fractions

Amplitudes and phases

- two channels with different sensitivity to different amplitudes
- significant differences in phase motion due to three-body rescattering! Niecknig, BK 2015, 2017

Amplitudes and phases

- two channels with different sensitivity to different amplitudes
- significant differences in phase motion due to three-body rescattering! Niecknig, BK 2015, 2017

Summary

Final-state interactions of pions, kaons...

- can be analysed systematically using dispersion theory
- form factors obey universal (hadronic) phase relations

Summary

Final-state interactions of pions, kaons...

- can be analysed systematically using dispersion theory
- form factors obey universal (hadronic) phase relations

Resonance line shapes...

- can be affected by left-hand cuts / crossed-channel effects
- ideal demonstration case: $V \rightarrow 3\pi$ (elastic, one partial wave) many partial waves in $D^+ \rightarrow \bar{K}\pi\pi^+$

Summary / Open questions

Final-state interactions of pions, kaons...

- can be analysed systematically using dispersion theory
- form factors obey universal (hadronic) phase relations

Resonance line shapes...

- can be affected by left-hand cuts / crossed-channel effects
- ideal demonstration case: $V \rightarrow 3\pi$ (elastic, one partial wave) many partial waves in $D^+ \rightarrow \bar{K}\pi\pi^+$

Matching to fundamental theories

- subtraction constants free fit parameters—matching?
- in what kinematical regimes?

Summary / Open questions

Final-state interactions of pions, kaons...

- can be analysed systematically using dispersion theory
- form factors obey universal (hadronic) phase relations

Resonance line shapes...

- can be affected by left-hand cuts / crossed-channel effects
- ideal demonstration case: $V \rightarrow 3\pi$ (elastic, one partial wave) many partial waves in $D^+ \rightarrow \bar{K}\pi\pi^+$

Matching to fundamental theories

- subtraction constants free fit parameters—matching?
- in what kinematical regimes?

Controlled & systematic high-energy extensions

 inelasticities/coupled channels, higher partial waves, role of three-body unitarity...

Summary / Open questions

Final-state interactions of pions, kaons...

- can be analysed systematically using dispersion theory
- form factors obey universal (hadronic) phase relations

Resonance line shapes...

- can be affected by left-hand cuts / crossed-channel effects
- ideal demonstration case: $V \rightarrow 3\pi$ (elastic, one partial wave) many partial waves in $D^+ \rightarrow \bar{K}\pi\pi^+$

Matching to fundamental theories

- subtraction constants free fit parameters—matching?
- in what kinematical regimes?

Controlled & systematic high-energy extensions

 inelasticities/coupled channels, higher partial waves, role of three-body unitarity...

 \rightarrow pairwise interaction only (with correct $\pi\pi$ scattering phase)

 \rightarrow full 3-particle rescattering, only overall normalisation adjustable

full 3-particle rescattering, 2 adjustable parameters
 (additional "subtraction constant" to suppress inelastic effects)

- perfect fit respecting analyticity and unitarity possible
- contact term emulates neglected rescattering effects
- no need for "background" inseparable from "resonance"