S-MATRIX APPROACH TO THE THERMODYNAMICS OF HADRONS

POK MAN LO

University of Wroclaw

PKI2018 WORKSHOP 14 FEB, 2018 JLAB, NEWPORT NEWS, VA

CONCLUSION

S-matrix approach to thermodynamics

$$\Delta \ln Z = \int dE \, e^{-\beta E} \times \frac{1}{\pi} \, \frac{\partial}{\partial E} \, \mathrm{tr} \, (\delta_E) \, .$$

change in density of state / time delay

Broad resonances

Repulsive channels

IN COLLABORATION WITH

Michal Marczenko (Wroclaw) Michal Szymanski (Wroclaw) Bengt Friman (GSI) Pasi Huovinen (Wroclaw) Chihiro Sasaki (Wroclaw) Krzysztof Redlich (Wroclaw)

HRG & QCD EQUATION OF STATE

HADRON RESONANCE GAS MODEL

Confinement

$$Z = \sum_{\alpha=B,M} \langle \alpha | e^{-\beta H} | \alpha \rangle$$

HADRONIC STAT REPRESENTATIO

Confinement

physical quantities

QCD spectrum

FLUCTUATIONS

 studying the system by linear response

$$\mu = \mu_B B + \mu_Q Q + \mu_S S$$

$$\chi_{B,S,\dots} = \frac{1}{\beta V} \frac{\partial^2}{\partial \bar{\mu}_B \partial \bar{\mu}_S \dots} \ln Z$$

 μ_Q

 m_q

FLUCTUATIONS

Baryon sector

$$P = T \sum_{\alpha = \mathcal{M}, B} g_{\alpha} \int \frac{d^3k}{(2\pi)^3} \mp \ln(1 \mp e^{-\beta\sqrt{k^2 + M_{\alpha}^2}})$$

or introduce the chemical potential

$$P = T \sum_{\alpha = B, \bar{B}} g_{\alpha} \int \frac{d^{3}k}{(2\pi)^{3}} \ln(1 + e^{-\beta\sqrt{k^{2} + M_{\alpha}^{2}} \pm \bar{\mu}_{B}})$$

FLUCTUATIONS

taking derivative

 $\chi_B = \frac{\partial^2}{\partial \bar{\mu}_B \partial \bar{\mu}_B} P \quad \text{at the limit} \quad \mu_B \to 0$ probes fluctuations $\chi_B = \frac{1}{\beta V} \frac{\partial^2}{\partial \bar{\mu}_B \partial \bar{\mu}_B} \ln Z$ $= T^2 \langle \langle \int d^4 x \, \bar{\psi}(x) \gamma^0 \psi(x) \bar{\psi}(0) \gamma^0 \psi(0) \rangle \rangle_c$

Andronic, A. et al. Nucl.Phys. A904-905 (2013)

Brookhaven National Laboratory

Courtesy of Brookhaven National Laboratory

Courtesy of Brookhaven National Laboratory

TOWARDS REAL HADRON GAS

- flavor content of hadrons in individual sectors
 - -> the case of missing strange baryons

- Question the assumption of HRG treatment for resonances:
 - -> non-interacting and point-like.

Missing resonances in the strange sector

see also Michael Doering

and Jose R. Pelaez

S-MATRIX APPROACH

R. Dashen, S. K. Ma and H. J. Bernstein, Phys. Rev. 187 (1969) 345.

Graham, Quandt, Weigel, Spectral Methods in QFT, Lect. Notes Phys. 777 (2009).

PHASE SHIFT AND DENSITY OF STATES

particle in a box with an obstacle

S-MATRIX FORMULATION OF THERMODYNAMICS

$$\Delta \ln Z = \int dE \, e^{-\beta E} \frac{1}{4\pi i} \, \mathrm{tr} \left\{ S_E^{-1} \frac{\overleftarrow{\partial}}{\partial E} S_E \right\}_c$$

R. Dashen, S. K. Ma and H. J. Bernstein, Phys. Rev. 187 (1969) 345.

A SIMPLE TRICK

 $S_E = e^{2i\delta_E}$ $\frac{1}{4\pi i} \operatorname{tr} \left\{ S_E^{-1} \frac{\partial}{\partial E} S_E \right\}_{\mathcal{C}}$ $= \frac{1}{2\pi} \times 2 \frac{\partial}{\partial E} \frac{1}{2} \operatorname{Im} \operatorname{tr} \{ \ln S_E \}$ $\Delta \ln Z = \int dE \, e^{-\beta E} \times \frac{1}{\pi} \, \frac{\partial}{\partial E} \, \mathrm{tr} \, (\delta_E) \, .$

E. Beth and G. Uhlenbeck, Physica (Amsterdam) 4, 915 (1937).

FORMULATION

given the exact phase shift $\delta_j(M)$

from theory χ pt, LQCD or from experiment

thermodynamics

$$B_j = 2\frac{d}{dM}\delta_j$$

eff. spectral function

$$P = P^{(0)} + \Delta P^{\mathrm{B.U.}}$$

free gas + interaction

FORMULATION
dynamical statistical (thermal weight)

$$\Delta P^{\text{B.U.}} = (2j+1) \int \frac{dM}{2\pi} B_j(M) \int \frac{d^3k}{(2\pi)^3} T \ln \left(1 + e^{-\beta E(k,q,m_i)}\right)$$

$$B_j = 2 \frac{d}{dM} \delta_j$$

$$M_1 = \frac{q}{q} = \frac{q}{q}$$

$$M_1 = \sqrt{q^2 + m_1^2} + \sqrt{q^2 + m_2^2}$$

WHAT'S IN A NAME? THAT WHICH WE CALL A RESONANCES?

A resonance is MORE than a MASS and a WIDTH

$$\rho(770)^{[h]} \qquad I^{G}(J^{PC}) = 1^{+}(1^{--})$$
Mass $m = 775.26 \pm 0.25$ MeV
Full width $\Gamma = 149.1 \pm 0.8$ MeV
 $\Gamma_{ee} = 7.04 \pm 0.06$ keV

BETH-UHLENBECK APPROXIMATION	
$\delta = -\mathrm{Im}\mathrm{Tr}\mathrm{ln}G_{\rho}^{-1}$	physical interpretation:
$B = 2 \frac{\partial}{\partial E} \delta$	contribution from correlated pi pi pair
$= -2 \operatorname{Im} \frac{\partial}{\partial E} \ln G_{\rho}^{-1}$ $= -2 \operatorname{Im} [G_{\rho}](2E) + 2 \operatorname{Im} [\frac{\partial \Sigma_{\rho}}{\partial E} G_{\rho}]$	
$\Longrightarrow \rho_{\rho}(E) + \delta \rho_{\rho}(E)$	$\frac{\partial \Sigma_{\rho}}{\partial E}$

BOLTZMANN SUPPRESSION

$$\Delta P \approx \frac{T^2}{2\pi^2} \int \frac{dM}{2\pi} B(M) \times \left(M^2 K_2(M/T) \right)$$

Boltzmann suppression

M(GeV)

PI-N SYSTEM

PML, B. Friman, K. Redlich, C. Sasaki, PLB 778 (2018) 454-458
N* AND DELTAS

- N*: 1535 (S11), 1440 (P11), 1520 (D13) ...
 ∆: 1232 (P33), 1620 (S31) ...
- Repulsive forces between pions and nucleons
- BQ-correlation: S = -1 hyperons are excluded!

KNOWN UNKNOWNS ???

- Inelasticity:
 - η production (**ok**)
 - multi-pions states (in progress)

COUPLED-CHANNEL PROBLEM

$$S = \begin{pmatrix} \eta e^{2i\delta_I} & i\sqrt{1-\eta^2} e^{i(\delta_I+\delta_{II})} \\ i\sqrt{1-\eta^2} e^{i(\delta_I+\delta_{II})} & \eta e^{2i\delta_{II}} \end{pmatrix}$$

$$Q(M) \equiv \frac{1}{2} \operatorname{Im} (\operatorname{tr} \ln S)$$
$$= \frac{1}{2} \operatorname{Im} (\ln \det [S])$$
$$= \delta_I + \delta_{II}.$$

 πN system

$$\pi N \to \left(\begin{array}{c} \pi N \\ \eta N \end{array}\right) \to \pi N$$
$$\eta N \to \left(\begin{array}{c} \pi N \\ \eta N \end{array}\right) \to \eta N$$

CURRENT STATUS

S-MATRIX TREATMENT OF RESONANCES

- mesonic
 - $\begin{array}{ll} \pi\pi \to \sigma, \rho & \pi\pi \to KK & 3\pi \to 3\pi \text{ triangle} \\ \pi K \to \kappa, K^* & \eta, \phi, \dots & 4\pi \to 4\pi & box \\ \pi\pi\pi \to \omega & \end{array}$
- baryonic
 - $\begin{array}{ll} \pi N \rightarrow N^{\star}, \Delta & KN, \pi \Sigma, \pi \Lambda \rightarrow \Lambda^{\star}, \Sigma^{\star} \\ NN \rightarrow NN & \pi \pi N \rightarrow \rho N, \pi N^{\star}, \pi \Delta \\ \pi N \rightarrow \eta N & \text{s-wave} \end{array}$

STRANGE BARYONS K N, PI LAMBDA, PI SIGMA ...

PHASE SHIFT FROM PWA

Coupled Channels partial wave calculator for KN scattering

by the Joint Physics Analysis Center (JPAC)

Version: September 1, 2015

Authors:

Cesar Fernandez-Ramirez (Jefferson Lab) Igor V. Danilkin (Jefferson Lab) Vincent Mathieu (Indiana University) Adam P. Szczepaniak (Indiana University and Jefferson Lab)

Citation: Fernandez-Ramirez et al., arxiv:1510.07065 [hep-ph]

First version: Cesar Fernandez-Ramirez (Jefferson Lab) This version: Cesar Fernandez-Ramirez (Jefferson Lab)

Contact: cefera@gmail.com (Cesar Fernandez-Ramirez)

Disclaimers:

1 - This code follows the 'garbage in, garbage out' philosphy. If your parameters do not make sense, the output will not make sense either.
2 - You can use, share and modify this code under your own responsability.
3 - This code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
4 - No PhD students or postdocs were severely damaged during the development of this project.

STRANGENESS CONTENT IN A HADRON GAS

• K-N system requires a coupled channel analysis

 $|\bar{K}N\rangle, |\pi\Sigma\rangle, |\pi\Lambda\rangle, |\eta\Lambda\rangle, \dots$ 16 basis states

$$Q(M) \equiv \frac{1}{2} \operatorname{Im} (\operatorname{tr} \ln S)$$
$$= \frac{1}{2} \operatorname{Im} (\ln \det [S])$$
$$= \delta_{KN} + \delta_{\pi\Sigma} + \delta_{\pi\Lambda} + \dots$$

strange mesons to be discovered...

PML, M. Marczenko, K. Redlichand C. Sasaki PRC 92 (2015) no.5, 055206

$2 \times BQ/BB - BS/BB = 1$

IN MEDIUM EFFECTS

 $\Sigma_{\pi} =$

 $\propto \int \frac{d^3q}{\omega_p \,\omega_q} \, n_X \times T_{\pi X}(s) \, \mathbf{k}$

forward amplitude

A. Schenk NPB 363(1991)

ISOBAR MODEL

THANK YOU

STRANGE MESONS

 $\pi K \to \kappa, K^{\star}$

