Analyticity Constraints for Exotic Mesons

Vincent MATHIEU

Jefferson Lab

Joint Physics Analysis Center

KL workshop February 2018

Im
$$t_{\ell}^{-1}(s) = -\rho(s)$$

 $t_{\ell}(s \pm i\epsilon) = \frac{1}{K(s) \mp i\rho(s)}$
example: $K(s) = \frac{m^2 - s}{m\Gamma}$

satisfies causality (regular outside the real axis)

Im
$$t_{\ell}^{-1}(s) = -\rho(s)$$

 $t_{\ell}(s \pm i\epsilon) = \frac{1}{K(s) \mp i\rho(s)}$
example: $K(s) = \frac{m^2 - s}{m\Gamma}$

satisfies causality (regular outside the real axis)

define function on sheet II on the lower half plane

$$t_{\ell}^{II}(s) = \frac{1}{K(s) - i\rho(s)}$$
$$= \frac{m\Gamma}{m^2 - s - i\rho(s)m\Gamma}$$

Unitarity

$$t_{\ell} (s) = \frac{1}{K(s) - i\rho(s)}$$

Unitarity used to construct parametrizations

Fit waves independently (first step)

T(s,t) has a right- and a left-hand cuts has no other singularity on sheet I

T(s,t) has a right- and a left-hand cuts has no other singularity on sheet I

$$f(\nu) = \int_{\nu_0}^{\Lambda} \left(\frac{\operatorname{Im} f(\nu')}{\nu' - \nu} + \frac{\operatorname{Im} f(-\nu')}{\nu' + \nu} \right) \frac{d\nu'}{\pi} \qquad \operatorname{Im} \nu \qquad t = t_0$$
$$+ \oint_{C_\Lambda} \frac{f(\nu')}{\nu' - \nu} \frac{d\nu'}{2i\pi} \qquad (+ \operatorname{sub.}) \qquad (I)$$
$$\int_{\nu_0}^{\Lambda} \operatorname{Im} f(\nu') + \operatorname{Im} f(-\nu') d\nu' = \oint_{C_\Lambda} f(\nu') d\nu' (II)$$
$$\int_{\nu_0}^{\Lambda} \operatorname{Im} f(\nu') + \operatorname{Im} f(-\nu') d\nu' = \int_{C_\Lambda} f(\nu') d\nu' (II)$$

T(s,t) has a right- and a left-hand cuts has no other singularity on sheet I

$$f(\nu) = \int_{\nu_0}^{\Lambda} \left(\frac{\operatorname{Im} f(\nu')}{\nu' - \nu} + \frac{\operatorname{Im} f(-\nu')}{\nu' + \nu} \right) \frac{d\nu'}{\pi} + \oint_{C_{\Lambda}} \frac{f(\nu')}{\nu' - \nu} \frac{d\nu'}{2i\pi} + \text{sub.}$$
(I

$$f(\nu) = \frac{T(\nu, t_0)}{\nu^2}, \frac{T(\nu, t_0)}{\nu}$$

 $\Lambda \to \infty$

Roy Equations

Relevant for sigma and kappa resonances

Constrained fit to data: Solving Roy equations: Phys. Rev. D83 074004 (2011) Phys. Rev. Lett. 96 132001 (2006)

Current resolution is ~ 2 GeV

Current resolution is ~ 2 GeV

DIRC will extend resolution to ~ 4 GeV

Data in high mass region will be available!

Eta-Pi @COMPASS

Odd waves have exotic quantum numbers (in the quark model sense)

COMPASS Phys. Lett. B740 (2015)

Eta-Pi @COMPASS

COMPASS Phys. Lett. B740 (2015)

High Mass Region

A(s,t) has a right- and a left-hand cuts has no other singularity on sheet I

Backward:

$$\frac{1}{2} \int_{\nu_0}^{\Lambda} \operatorname{Im} \left[A^{\pi\eta \to \pi\eta} (\nu, u = 0) + A^{\pi\pi \to \eta\eta} (\nu, u = 0) \right] d\nu = \beta_a \frac{\Lambda^{\alpha_a + 1}}{\alpha_a + 1}$$
$$\frac{1}{2} \int_{\nu_0}^{\Lambda} \operatorname{Im} \left[A^{\pi\eta \to \pi\eta} (\nu, u = 0) - A^{\pi\pi \to \eta\eta} (\nu, u = 0) \right] \frac{\nu}{\Lambda} d\nu = \beta_\pi \frac{\Lambda^{\alpha_\pi + 1}}{\alpha_\pi + 1}$$

even and odd signature exchange

Forward:

$$\int_{\nu_0}^{\Lambda} \operatorname{Im} A^{\pi\eta \to \pi\eta}(\nu, t=0) d\nu = \beta_{\mathbb{P}} \frac{\Lambda^{\alpha_{\mathbb{P}}+1}}{\alpha_{\mathbb{P}}+1} + \beta_a \frac{\Lambda^{\alpha_a+1}}{\alpha_a+1}$$

Backward:

$$\frac{1}{2} \int_{\nu_0}^{\Lambda} \text{Im} \left[A^{\pi\eta \to \pi\eta} (\nu, u = 0) + A^{\pi\pi \to \eta\eta} (\nu, u = 0) \right] d\nu = \beta_a \frac{\Lambda^{\alpha_a + 1}}{\alpha_a + 1}$$

$$\frac{1}{2} \int_{\nu_0}^{\Lambda} \operatorname{Im} \left[A^{\pi\eta \to \pi\eta}(\nu, u=0) - A^{\pi\pi \to \eta\eta}(\nu, u=0) \right] \frac{\nu}{\Lambda} d\nu = \beta_{\pi} \frac{\Lambda^{\alpha_{\pi}+1}}{\alpha_{\pi}+1}$$

Forward:

$$\int_{\nu_0}^{\Lambda} \operatorname{Im} A^{\pi\eta \to \pi\eta}(\nu, t=0) d\nu = \beta_{\mathbb{P}} \frac{\Lambda^{\alpha_{\mathbb{P}}+1}}{\alpha_{\mathbb{P}}+1} + \beta_a \frac{\Lambda^{\alpha_a+1}}{\alpha_a+1}$$

Backward:

$$\frac{1}{2} \int_{\nu_0}^{\Lambda} \text{Im} \left[A^{\pi\eta \to \pi\eta} (\nu, u = 0) + A^{\pi\pi \to \eta\eta} (\nu, u = 0) \right] d\nu = \beta_a \frac{\Lambda^{\alpha_a + 1}}{\alpha_a + 1}$$

$$\frac{1}{2} \int_{\nu_0}^{\Lambda} \operatorname{Im} \left[A^{\pi\eta \to \pi\eta} (\nu, u = 0) - A^{\pi\pi \to \eta\eta} (\nu, u = 0) \right] \frac{\nu}{\Lambda} d\nu = \beta_{\pi} \frac{\Lambda^{\alpha_{\pi} + 1}}{\alpha_{\pi} + 1} \approx 0$$

Im
$$A^{\pi\eta\to\pi\eta}(\nu, u=0) \approx \text{Im } A^{\pi\pi\to\eta\eta}(\nu, u=0)$$

no P-wave

D-wave is a Breit-Wigner with A2(1320)

Backward:

$$\int_{\nu_0}^{\Lambda} \operatorname{Im} A^{\pi\eta \to \pi\eta}(\nu, u=0) d\nu = \beta_a \frac{\Lambda^{\alpha_a+1}}{\alpha_a+1}$$

Combine and PW projection:

$$3\int_{\nu_0}^{\Lambda} \operatorname{Im} t_1(\nu) P_1(z) d\nu = \beta_{\mathbb{P}} \frac{\Lambda^{\alpha_{\mathbb{P}}+1}}{\alpha_{\mathbb{P}}+1} + \beta_f \frac{\Lambda^{\alpha_f+1}}{\alpha_f+1} - \beta_a \frac{\Lambda^{\alpha_a+1}}{\alpha_a+1} + \mathcal{O}(m_\eta^2 - m_\pi^2)$$

Backward:

$$\int_{\nu_0}^{\Lambda} \operatorname{Im} A^{\pi\eta \to \pi\eta}(\nu, u = 0) d\nu = \beta_a \frac{\Lambda^{\alpha_a + 1}}{\alpha_a + 1}$$

Combine and PW projection:

Dispersion relations constrains parametrizations

Data will be available in a large mass region

One can develop un-subtracted or moments dispersion relations

Example: high mass asymmetry generate exotic wave

$$3\int_{\nu_0}^{\Lambda} \operatorname{Im} t_1(\nu) P_1(z) d\nu = \beta_{\mathbb{P}} \frac{\Lambda^{\alpha_{\mathbb{P}}+1}}{\alpha_{\mathbb{P}}+1} + \beta_f \frac{\Lambda^{\alpha_f+1}}{\alpha_f+1} - \beta_a \frac{\Lambda^{\alpha_a+1}}{\alpha_a+1} + \mathcal{O}(m_\eta^2 - m_\pi^2)$$

Phase shifts (and inelasticities) of pseudoscalar scatterings are needed

JPAC Interactive Website

Interactive webpage:

http://www.indiana.edu/~jpac/index.html

NSD

17

Simulation

Beam energy in the lab frame (target rest frame):

 E_{γ} in GeV 9.00

	0 \		0 / 1	
ρ	$g_{ ho\eta\gamma}$: 0.479	٢	$g_{ ho\eta^\prime\gamma}$: 0.401	٢
	$g_{1 ho}$: 13.49	٢	b 1_{\rho}: 0.00	٢
	$\gamma_{1,1}^ ho$: 0.00	٢	$\gamma_{1,2}^ ho$: 0.00	٢
ω	$g_{\omega\eta\gamma}$: 0.136	٢	$g_{\omega\eta^\prime\gamma}$: 0.127	٢
	$g_{1\omega}$: 0.00	٢	$b_{1\omega}$: 0.00	٢
	$\gamma^\omega_{1,1}$: 0.00	٢	$\gamma^{\omega}_{1,2}$: 0.00	٢
φ	$g_{\phi\eta\gamma}$: 0.210	٢	$g_{\phi\eta^\prime\gamma}$: 0.217	٢
	$g_{1\phi}$: 0.00	٢	$b_{1\phi}$: 0.00	٢
	$\gamma^{\phi}_{1,1}$: 0.00	٢	$\gamma^{\phi}_{1,2}$: 0.00	٢

•

Natural exchanges (vector exchanges): [show/hide]

Unnatural exchanges (axial exchanges):[show/hide]

Unnatural exchanges (pseudo-tensor exchanges):[show/hide]

Resources

- Publications: [Mat17a]
- C/C++: C/C++ file
- Input file: param.txt , EtaBA.txt .
- Output files: EtaP-BA.txt .
- Contact person: Vincent Mathieu
- Last update: May 2017

Format of the input and output files: [show/hide]

Results

Download the output file: EtaP-BA.txt Download the plots: BA.png, kVA.png, ratio.png

JPAC Interactive Website

JPAC Interactive Website

Backup Slides

Checking Analyticity

Reconstruct the real part from the dispersion relation

$$A(\nu, t) = \frac{2}{\pi} \int_{\nu_0}^{\infty} \frac{\operatorname{Im} A(\nu', t)}{\nu'^2 - \nu^2} \nu' d\nu'$$

Inelastic Scattering

$$\operatorname{Im} F(s) = \rho(s)t^*(s)F(s)$$

$$F(s) = F_R(s) + F_L(s)$$

F_R has only right hand cut F_L has only left hand cut

Omnes solution (for known F_L)

$$F(s) = F_L(s) + t(s)\frac{1}{\pi} \int_{s_0}^{\infty} \frac{\rho(s')F_L(s')}{s'-s} ds'$$

Check: Im $F(s) = 0 + \rho t^*(s)t(s) \int_{s_0}^{\infty} \frac{\rho(s')F_L(s')}{s'-s} ds' + t^*(s)F_L(s)$

 $\operatorname{Im} (AB) = [\operatorname{Im} A]B + A^* \operatorname{Im} B$

We know how to parametrize t. We need to fit or to model F_L

Eta-Pi @COMPASS

A. Jackura et al (JPAC) and COMPASS, arXiv:1707.02848

COMPASS PLB740 (2015)

Eta-Pi @COMPASS

High energy beam: $p_{\text{lab}} = 190 \text{ GeV}$

final state:

$$\pi^{-}\pi^{+}\pi^{-}\gamma\gamma \quad \text{with} \quad \gamma\gamma:\pi^{0} \text{ or } \eta$$

