A determination of the pion-kaon scattering length from 2+1 flavor lattice QCD

Daniel Mohler

Newport News, Feb 15th, 2018

Daniel Mohler (HIM)

Pion-kaon scattering lengths from 2+1 flavor QCD Newport News, Feb 15th, 2018

15th, 2018 1 / 20

Scattering: From exploratory to precision

Lang, Leskovec, DM, Prelovsek, PRD 86 054508 (2012)

- Much progress in the meantime
 - Formalism is now mature (coupled 2-particle channels well understood)
 - Lattice ensembles at light pion masses/ with several lattice spacings
- Exploratory resonance studies are much improved
 - See talk by Jo Dudek
 - See talk by Colin Morningstar
- For physics motivation see talks by Jose Pelaez, Luka Leskovec, .

(Further) previous dynamic lattice results

- 2+1 flavor Domain wall valence on staggered sea
 - NPLQCD, Beane et al. PRD 74 114503 (2006) • Uses calculation of $K^+\pi^+$ scattering lengths + SU(3) ChiPT
 - Calculation at $a \approx 0.125$ fm and $290 \le M_{\pi} \le 600$ MeV
- Determination through scalar semileptonic decay form factor $F_0(q^2)$ Flynn, Nieves, PRD 75 074024 (2007)
 - Lattice data from C. Dawson et al. PRD 74 114502 (2006)
 - 293 $\leq M_{\pi} \leq$ 408 MeV at lattice spacing a = 0.12 fm
- 2+1 flavor Wilson determination by PACS-CS
 - PACS-CS, Sasaki et al. PRD 89 054502 (2014)
 - $170 \le M_{\pi} \le 710$ MeV at lattice spacing $a \approx 0.09$ fm
 - Fits (to $\pi\pi$, $K\pi$, and KK channels) with lattice version of $O(p^4)$ ChiPT
 - Authors comment that discretization effects should be checked
- Determination using staggered fermions by Fu
 - Ziwen Fu, PRD 85 074501 (2012) $\sim M \sim 460$ MeV at lettice appeirs $a \sim 0.15$ fm
 - $330 \le M_{\pi} \le 460$ MeV at lattice spacing a = 0.15 fm
 - Not universally accepted due to use of staggered fermions at a single lattice spacing
- More comprehensive comparison \rightarrow Jacobo Ruiz de Elvira's talk

Outline

Motivation

Introduction

- Recent progress in Lattice QCD
- Systematic uncertainties
- Simulation landscape
- B Hadron-hadron scattering on CLS ensembles
 - Kaon-pion scattering lengths in $I = \frac{1}{2}$ and $I = \frac{3}{2}$
 - Towards coupled-channel results for the $\Lambda(1405)$

∃ ► ▲ ∃ ► ∃ = √Q ∩

Recent progress in Lattice QCD

- Dynamical simulations with 2+1(+1) flavors of sea quarks
- Simulations at physical pion (light-quark) masses
- Isospin splitting and QCD+QED simulations
- Improved heavy quark actions for charm

BMW Collaboration, Borsanyi et al. Science 347 1452 (2015)

Progress from an old idea: Lüscher's finite-volume method

M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237.

Basic observation: Finite volume, multi-particle energies are shifted with regard to the free energy levels due to the interaction

$$E = E(p_1) + E(p_2) + \Delta_E$$

- Energy shifts encode scattering amplitude(s)
- Original method: Elastic scattering in the rest-frame in multiple spatial volumes *L*³
- Coupled 2-hadron channels well understood
- 2 ↔ 1 and 2 ↔ 2 transitions well understood (example ππ → πγ^{*})
- significant progress for 3-particle scattering
 → see talks by Akaki Rusetsky, Maxim Mai

Fully systematic calculation vs. exploratory study

Important lattice systematics from

- Taking the *continuum limit*: $a(g,m) \rightarrow 0$
- taking the *infinite volume limit*: $L \to \infty$
- Calculation at (or extrapolation to) the physical pion mass

So far: Mostly exploratory results

- Should be compared only qualitatively to experiment
- Provide an outlook on future Lattice QCD results

Example for fully systematic results:

• Flavor physics results listed in the FLAG review http://itpwiki.unibe.ch/flag/

Pion-kaon scattering lengths from 2+1 flavor QCD

Fully systematic calculation vs. exploratory study

Important lattice systematics from

- Taking the *continuum limit*: $a(g,m) \rightarrow 0$
- Exploit power law finite volume effects (keeping exponential effects small)
- Calculation at (or extrapolation to) the physical pion mass

So far: Mostly exploratory results

- Should be compared only qualitatively to experiment
- Provide an outlook on future Lattice QCD results

Example for fully systematic results:

• Flavor physics results listed in the FLAG review http://itpwiki.unibe.ch/flag/

Pion-kaon scattering lengths from 2+1 flavor QCD

CLS 2+1 flavor ensembles: Overview

Bruno et al. JHEP 1502 043 (2015); Bali et al. PRD 94 074501 (2016)

plots by Jakob Simeth, RQCD

• Ensembles at 5 lattice spacings and with a range of $M_{\pi} \leq 420 \text{MeV}$

• Ensembles to control (or exploit) finite volume effects

CLS 2+1 flavor ensembles: Statistics – area \propto MDU

Bruno et al. JHEP 1502 043 (2015); Bali et al. PRD 94 074501 (2016)

plots by Jakob Simeth, RQCD

- > 4000 MDU for many ensembles Typically save 1 configuration every 4 MDU
- target statistics chosen considering largest τ_{int} (often YM action density)

CLS 2+1 flavor ensembles: Volumes used

Bruno et al. JHEP 1502 043 (2015); Bali et al. PRD 94 074501 (2016)

plots by Jakob Simeth, RQCD

三日 のへの

10/20

- red: $m_{\pi}L \leq 4$; yellow: $4 \leq m_{\pi}L \leq 5$; green $5 \leq m_{\pi}L$
- Most ensembles with $m_{\pi}L \geq 4$
- Some smaller volumes to check finite size effects

Ensembles to be used

with Ben Hörz, John Bulava, Colin Morningstar

β	a [fm]	m_{π} [MeV]	sizes	Ensemble names
3.4	0.086	280	$24^3 \times 128, 32^3 \times 96, 48^3 \times 128$	U101, H105, N101
3.4	0.086	220	$48^3 \times 96, 64^3 \times 128$	C101, D101
3.46	0.076	280	$48^{3} \times 128$	N401
3.55	0.065	280	$32^3 \times 128, 48^3 \times 128$	S201,N200
3.55	0.065	200	$64^{3} \times 128$	D200
3.55	0.065	137	$96^3 \times 192$	E250
3.7	0.050	280	$64^3 \times 192$	J303

- Using most CLS 2+1 ensembles with $m_{\pi} \leq 280 \text{ MeV}$
- PRELIMINARY data from ensembles not grayed out
- Distillation setup differs slightly ensemble by ensemble
- Perambulators and meson functions saved to disk

Ensembles to be used & current statistics

with Ben Hörz, John Bulava, Colin Morningstar

β	a [fm]	m_{π} [MeV]	size	Ensemble	statistics $(n_{cnfg} \times n_t)$
3.4	0.086	220	$64^3 \times 128$	D101	143×3
3.46	0.076	280	$48^3 \times 128$	N401	275×2
3.55	0.065	280	$48^3 \times 128$	N200	427×2
3.55	0.065	200	$64^{3} \times 128$	D200	559×2
3.7	0.050	280	$64^3 \times 192$	J303	329 × 3

- Using most CLS 2+1 ensembles with $m_{\pi} \leq 280 \text{ MeV}$
- PRELIMINARY data from ensembles not grayed out
- Distillation setup differs slightly ensemble by ensemble
- Perambulators and meson functions saved to disk

くロット (過) (ヨマ (ヨ) (日) (日)

Preliminary results for $a_{\frac{1}{2}}$

- Naive extraction from the energy close to threshold (assumes single-channel, single wave)
- Uncertainty is statistical only
- Non-negligible uncertainty from scale, fitting choices, nonzero effective range, ...

Preliminary results for $a_{\frac{3}{2}}$

- Naive extraction from the energy close to threshold (assumes single-channel, single wave)
- Uncertainty is statistical only
- Non-negligible uncertainty from scale, fitting choices, nonzero effective range, ...

Exploratory study: $\Lambda(1405), J^P = \frac{1}{2}^{-1}$

• PDG (4 star resonance)

$$M_{\Lambda} = 1405^{+1.3}_{-1.0} MeV$$
 $\Gamma_{\Lambda} = 50.5 \pm 2.0$

- Unitarized χ PT + Model input yields 2 poles with $\Re \approx 1400$ MeV
- CLAS observes different line shapes for $\Sigma^-\pi^+$, $\Sigma^+\pi^-$ and $\Sigma^0\pi^0$ Interference between I = 0 and I = 1 amplitudes is the likely reason
- Even the $\Sigma^0 \pi^0$ is badly described by a single Breit-Wigner
- CLAS data consistent with popular 2-pole picture
- No satisfactory lattice results (although claims exist)
- Relevant channels: $\Sigma \pi$, $N\bar{K}$ (and maybe $\Lambda \eta$); simulation in isospin limit
- Goal: Explore coupled channel problem and extract scattering amplitudes from the low-lying energy spectrum

together with J. Bulava, M. Hansen, B. Hörz, C. Morningstar

Ensemble and group theory

Current data on CLS Ensemble N200

<i>a</i> [fm]	$T \times L^3$	m_{π} [MeV]	$m_K [{\rm MeV}]$	$m_{\pi}L$	Ncnfg
0.0644	$128 imes 48^3$	280	460	4.3	427

Lattice irreducible representations for a given J^P

see Morningstar et al. arXiv:1303.6816

J^P	[000]	[00n]	[0nn]	[nnn]	
$\frac{1}{2}^{+}$	G_{1g}	G_1	G	G	Λ , $\Lambda(1600)$
$\frac{1}{2}^{-}$	G_{1u}	G_1	G	G	$\Lambda(1405),\Lambda(1670)$
$\frac{3}{2}^{+}$	H_g	G_1, G_2	2G	F_1, F_2, G	$\Lambda(1690)$
$\frac{3}{2}^{-}$	H_u	G_1, G_2	2G	F_1, F_2, G	$\Lambda(1520),\Lambda(1690)$

A first look at some data: Truncating the basis

- Plot from an older dataset
- Basis including meson-meson states starts to yield usable plateaus
- Even a diverse 3-quark basis does not yield the correct spectrum!

Rest frame calculation: Fit stability

- Results for fits from t_{min} to 20
- Non-interacting levels indicated by their central value
- Correlated differences start to become significant

Rest frame calculation: effective range approximation

- Cannot rule out the simplest scenario of one bound state below $\Sigma\pi$
- Makes no statement about more complicated scenarios or physical m_{π}

Adding moving frames: Pattern of energy levels

- With Tr(M) = const., expect mild chiral extrapolation of *uds* states
- Our *G*₁(1) data does not have a large enough basis (caution)
- The Λ ground state is seen where expected
- No indication of levels close to $\Lambda(1600)$ in G_{1g} irrep
- No indication of levels close to $\Lambda(1520)$ in any irrep
- Apparent absence of FV states should constrain models

Outlook: What to expect?

- Isospin $\frac{1}{2}$ and $\frac{3}{2}$ kaon-pion scattering lengths
 - Add further ensembles at coarsest lattice spacing (CLS H105, N101)
 - Add a data point at physical pion and kaon mass (CLS E250)
 - Add statistics on C101/D101 ?
 - Investigate effective range effects
 - \rightarrow See talk by C. Morningstar for methodology
 - Address various systematic uncertainties
- Coupled channel calculation for the $\Lambda(1405)$
 - Currently doubling N200 statistics ($\approx 400 \text{ configs} \rightarrow \approx 800 \text{ configs})$
 - Still enlarging the basis (include more 3-quark interpolators; include some $\Lambda \eta$)
 - We plan to run further pion mass, lattice spacing
 - Once we have bigger dataset: Check for consistency with model-inspired K-matrix parameterizations

Thank you!

The purpose of computing is insight, not numbers

- Richard Hamming

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example plateaus: J303

• Would benefit from optimized interpolators for pion/kaon

Daniel Mohler (HIM)

ъ

Fit systematics: Correlated differences vs. ratios

- Ratios from ratio fits agree with correlated energy differences at large time separation
- Significant fit systematics in some cases

Alternate chiral trajectory for $a_{\frac{1}{2}}$

Demonstrates importance of discretization effects

Daniel Mohler (HIM)

-

Results from 3-quark interpolating fields

• Many older results from 3-quark interpolators

Example: Engel, Lang, DM, Schäfer, PRD 87 074504 (2013) $\Lambda^\prime {\rm s}$ in Engel et al. PRD 87 034502 (2013)

- OK at heavy quark masses where states are stable
- Typically no indications of close-by scattering thresholds
- Experience from meson sector: Spectrum not only incomplete but wrong!

Meson-baryon scattering – challenges

Nucleon noise to signal

• For the nucleon we have (argument by Parisi, Lepage)

$$N\sigma_{N,\mathbf{p}=0}^{2} = \left\langle C_{N}(\mathbf{p}=0,t;m)^{2} \right\rangle - \left\langle C_{N}(\mathbf{p}=0,t;m) \right\rangle^{2}$$
$$\propto Z_{3\pi} e^{-3m_{\pi}t} + Z_{N}^{2} e^{-2m_{N}t}$$

• The noise to signal ratio therefore degrades exponentially

$$rac{\sigma_N(t)}{\langle C_N(t)
angle}\simeq rac{1}{\sqrt{N}}{
m e}^{\left(m_N-rac{3}{2}m_\pi
ight)t}$$

- Contractions are more complicated
- Less cases where 3-particle scattering can be ignored (in a first step)

Nucleon noise/signal

- Slope in (most of) plateau region does not reach asymptotic value (given by $m_N \frac{3}{2}m_{\pi}$)
- Suggests that in practice noise/signal scaling is not as severe
- Exponential growth qualitatively observed