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Motivation to study πK scattering 

• π,K are Goldstone Bosons of QCD → Test Chiral Symmetry Breaking

• Many light resonances appear → Strange SPECTROSCOPY 

Particularly interesting:

• 𝜅/𝐾0
∗(800) light scalar meson. “needs confirmation”.

Light scalar mesons longstanding candidates for non-ordinary mesons. 

Settle multiplet classification?

• 𝐾0
∗(1430)  smaller discussion on parameters and nature

• π,K appear as final products of almost all hadronic strange processes:

Examples: B,D, decays, CP violation studies, etc…



Most reliable sets:
Estabrooks et al. 78 (SLAC)

Aston et al.88 (SLAC-LASS)

I=1/2 and 3/2 combination

No clear “peak” or phase movement

of 𝜅/𝐾0
∗(800) resonance

Definitely NO BREIT-WIGNER shape

Mathematically correct to use POLES

Data



Resonances as poles

The universal features of resonances are their 

pole positions and residues *

𝑠𝑝𝑜𝑙𝑒 ≈M-i Γ/2

*in the Riemann sheet obtained from an analytic continuation through the physical cut

The Breit-Wigner shape is just an approximation for narrow and isolated resonances 
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Why use dispersion relations?    

CAUSALITY: 

Amplitudes T(s,t) are ANALYTIC in 

complex s plane but for cuts for thresholds.

Crossing implies left cut from u-channel threshold

Cauchy Theorem determines T(s,t) at ANY s, 

from an INTEGRAL on the contour

Good for: 1) Calculating T(s,t) where there is not data

2) Constraining data analysis

3) ONLY MODEL INDEPENDENT extrapolation to complex s-plane

without extra assumptions

If T->0 fast enough at high s, curved part vanishes

Otherwise, determined up to polynomial

(subtractions)

Left cut usually a problem
𝑇 𝑠, 𝑡 = න

𝑡ℎ

∞ 𝐼𝑚 𝑇(𝑠′, 𝑡)

𝑠 − 𝑠′
𝑑𝑠′ + 𝐿𝐶



Why so much worries about low energy and CORRECT ANALYTIC STRUCTURE?

Analyticity is expressed in the s-variable, not in 𝑠



Why so much worries about low energy and CORRECT ANALYTIC STRUCTURE?
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Analyticity is expressed in the s-variable, not in 𝑠

Important for 
the 𝜅/𝐾0

∗(800)

• Threshold behavior (chiral symmetry)

• Subthreshold behavior (chiral symmetry →Adler zeros)

• Other cuts (Left & circular)

𝜅/𝐾0
∗(800)

Less important for other resonances…

Problem shared 
by lattice!• Avoid spurious singularities



Roy-like Eqs. vs. Forward Dispersion Relations

So,  we need to get rid of ONE VARIABLE  to write CAUCHY THEOREM 

in terms of the other one

TWO MAIN APPROACHES

1) Integrate one variable and keep the other 

(partial wave dispersión relations)



Due to elastic unitarity: 

𝑆𝐼𝐼(𝑠) =
1

𝑆𝐼(𝑠)

The second sheet is then: 𝒕𝑰𝑰(𝒔) =
𝒕𝑰(𝒔)

𝟏 + 𝟐𝒊𝝈 𝒕𝑰(𝒔)

Recalling S 𝑠 = 1 + 2𝑖𝜎 𝑡 𝑠 , 𝜎 𝑠 =
𝑘

2 𝑠

• For elastic region second Riemann sheet is easy to obtain.

Looking for resonance poles

is nothing but looking for a zero in that denominator

on the first Riemann sheet accesible with the pw DR

Partial Wave Dispersion Relations: General  

• Analytic structure complicated if unequal masses (Circular cuts)

The problem is the left (and circular) cut



Unitarized ChPT 90’s Truong, Dobado, Herrero, JRP, Oset, Oller, Ruiz Arriola, Nieves, Meissner,…

Uses Chiral Perturbation Theory amplitudes inside dispersion relation.

Relatively simple, although different levels of rigour.  Generates all scalars

LEFT CUT APPROXIMATED, not so good for precisión: (753 ± 52)-i(235 ±33)MeV

But good for connecting with QCD. Strong hints of non-ordinary nature:

400 600 800 1000 1200

M

1000

800

600

400

200

0

i
2

Nc 3

Nc 5

Nc 10

-
i 

/2
   

 

Nc behavior
JRP, PRL. 92:102001,2004
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At odds
with q-qbar
Nc behavior

Correct behavior obtained for vectors

mq dependence
Nebreda, JRP, PRD81 (2010) 054035

becomes 
virtual 
state

Virtual state recently found on lattice
Dudek,Edwards, Thomas, Wilson, PRL. 113 (2014) 18, 182001

Both suggest important “molecular” component

Partial Wave Dispersion Relations:  Unitarized ChPT



Roy-like equations.  70’s Roy, Basdevant, Pennington, Petersen…

00’s Ananthanarayan, Caprini, Colangelo, Gasser, Leutwyler, Moussallam, Decotes Genon, Lesniak, Kaminski, JRP, Ruiz de Elvira, Yndurain…

LEFT CUT WITH PRECISION. 

PRICE: Infinite set of coupled integral equations. VALIDITY LIMITED at ~1.1 GeV

Use data on all waves + high energy . Optional: ChPT predictions for subtraction constants

The most precise and model independent pole determinations

f0(500) and K0*(800) existence, mass and width

firmly established with precision

(658±13)-i(278.5±i12) MeV
Descotes-Genon, B. Moussallam 

Partial Wave Dispersion Relations:  Partial Wave DR -3  

This approach already summarized yesterday by J. Ruiz de Elvira in his talk on applications to 

threshold region

Listed @PDG, but not enough for PDG



Two strategies

SOLVE equations: (Ananthanarayan, Colangelo, Gasser, Leutwyler, Caprini, Moussallam, Stern…)

S and P wave solution for Roy-like equations unique at low energy if high-energy, 

higher waves and scattering lengths known. (in isospin limit)

NO scattering DATA used at low energies ( 𝑠 ≤ 1 𝐺𝑒𝑉)

Good if interested in low energy scattering and do not trust data.

Uses ChPT/other input for threshold parameters

(see B. Moussallam’s talk)

Impose Dispersion Relations on fits to data. (García-Martín, Kaminski,JRP, Ruiz de Elvira, Ynduráin)

Use any functional form and fit to DATA imposing DR within uncertainties.

Also needs input on other waves and high energy.

(But you can use physical inspiration for clever choices of parameterizations)



Roy-like Eqs. vs. Forward Dispersion Relations

So,  we need to get rid of ONE VARIABLE  to write CAUCHY THEOREM 

in terms of the other one

TWO MAIN APPROACHES

1) Integrate one variable and keep the other 

(partial wave dispersión relations)

2) Fix one variable in terms of the other 

(fixed-t, hyperbolic relations…)



Fixed-t Dispersion Relations (DR)

Simple analytic structure in s-plane, simple derivation and use 

Left cut: With crossing can be rewritten in terms of physical region

One equation per amplitude. 

High Energy part known since Forward Amplitude~ Total cross section

Calculated up 1.7 GeV for πK (and 1400 MeV for ππ)

JRP, A .Rodas, Phys.Rev. D93 (2016) no.7, 074025

Not directly usable for unphysical sheets but very useful to constraint 

physical amplitudes up to relatively high energies

Most popular: t0=0, FORWARD DISPERSION RELATIONS (FDRs).
(Kaminski, Pelaez , Yndurain, Garcia Martin, Ruiz de Elvira, Rodas )



Since interested in the resonance region, we use minimal number of subtractions

Defining the s↔u symmetric 

and anti-symmetric amplitudes

at t=0 

We need one subtraction for the symmetric amplitude

And none for the antisymmetric

Forward dispersion relations for K π.

where Σ𝜋𝐾 = 𝑚𝜋
2 +𝑚𝐾

2



(not a solution of dispersión relations,

but a constrained fit)

A.Rodas & JRP, PRD93,074025 (2016)

Dispersive analysis of 

πK scattering DATA

up to 1.6 GeV

First observation:

Forward Dispersion relations

Not well satisfied by data

Particularly at high energies

So we use 

Forward Dispersion Relations 

as CONSTRAINTS on fits



How well Dispersion Relations are satisfied by unconstrained fits

Define an averaged 2 over these points, that we call d2

Every 22 MeV calculate the difference between both sides of the DR /uncertainty

d2 close to 1 means that the relation is well satisfied

d2>> 1 means the data set is inconsistent with the relation.

2 FDR’s Sum Rules 

threshold
Parameters of the 

unconstrained  data fits

To obtain CONSTRAINED FITS TO DATA (CFD) we minimize:

+ 𝑑1/2
2
+ 𝑑3/2

2
+෍

𝑘

(𝑝𝑘 − 𝑝𝑘
𝑒𝑥𝑝

)2

𝛿𝑝𝑘
2

𝜒2=𝑊 𝑑𝑇+
2
+ 𝑑𝑇−

2

W roughly counts the number

of effective degrees of freedom 
(sometimes we add weight on certain energy regions)

This can be used to check DR



S-waves. The most interesting for the K0* resonances 

Largest changes from UFD to 

CFD

at higher energies

From Unconstrained (UFD) to Constrained Fits to data (CFD)



P-waves:  Small changes

SOLUTION from 

previous Roy-Steiner 

approach

From Unconstrained (UFD) to Constrained Fits to data (CFD)

Our fits

describe 

data well



D-waves:  Largest changes of all, but at very high energies

From Unconstrained (UFD) to Constrained Fits to data (CFD)

F-waves:  

Imperceptible changes

Regge parameterizations allowed to vary: Only πK-ρ residue changes by 1.4 

deviations



Consistency up to 1.6 GeV!!

Consistency up to 1.74 GeV!!



• We have used FORWARD DISPERSION RELATIONS to constraint

𝜋𝐾 scattering amplitudes up to 1.6 GeV:

• Simple parameterizations. Easy to use

• Still describe data

• Consistent with unitarity, ANALYTICITY and crossing

Summary of this part

In progress:

We are about to finish the ππ→KK Roy-Steiner analysis up to 1.5 GeV

Working on the Roy-Steiner analysis for πK→πK



J. R. Peláez, A. Rodas, J. Ruiz de Elvira

Strange scalar resonances from dispersive 
analysis and analytiicty

Eur.Phys.J. C77 (2017) no.2, 91



Model independent analysis

• ONLY ONE MODEL INDEPENDENT ANALYSIS from a Roy-Steiner dispersive

formalism Decotes Genon et al 2006

AT low energies is a SOLUTION it does NOT use data. Call it prediction?

• DR provide 1st Riemann Sheet 

• For partial waves, IF in elastic regime, poles of S in 2nd sheet are zeros on 1st

Listed @PDG, but not enough for PDG

They ask for more dispersive determinations

Possibly with different approaches

(658±13)-i(278.5±i12) MeV



Kappa pole from CFD

We have amplitudes that describe data and satisfy dispersion relations up to 1.6 GeV

There is also a κ POLE in our CFD parameterizations







Kappa pole from CFD

• Extracted from our conformal CFD parameterization A.Rodas & JRP, PRD93,074025 (2016)

Fantastic analyticity properties, but still not completely model independent

(680±15)-i(334±i7.5) MeV

We have amplitudes that describe data and satisfy dispersion relations up to 1.6 GeV

There is also a κ POLE in our CFD parameterizations





Kappa pole from CFD

• Extracted from our conformal CFD parameterization A.Rodas & JRP, PRD93,074025 (2016)

Fantastic analyticity properties, but still not completely model independent

(680±15)-i(334±i7.5) MeV

Compare to PDG:                             (682±29)-i(273±i12) MeV 

We have amplitudes that describe data and satisfy dispersion relations up to 1.6 GeV

• Using Padé Sequences… A.Rodas & JRP  & J. Ruiz de Elvira. Eur. Phys. J. C (2017) 77:91

Almost model independent: Do not assume any functional form
(but local determination)

(680±13)-i(325±i 7) MeV

There is also a κ POLE in our CFD parameterizations



• Dispersion relations have been useful for establishing the existence 

of resonances and for rigorous determinations of their parameters

• For  light scalars, they have settled the longstanding σ-meson 

controversy and are on the way to settle that of the κ-meson

Summary

Still in progress:

A second dispersive determinationwith Roy-Steiner and FDRs  will finally settle the

κ/K0*(800) issue at the PDG. Our group has been asked to do it. 

We are about to finish the ππ→KK analysis needed asinput for πK→πK



SPARE SLIDES




