

Three-particle dynamics on the lattice

Akaki Rusetsky, University of Bonn

In collaboration with M. Döring, H.-W. Hammer, M. Mai, J.-Y. Pang, F. Romero-López, C. Urbach and J. Wu JHEP 09 (2017) 109, JHEP 10 (2017) 115, arXiv:1802.03362 + ongoing work

Pion-Kaon Interactions Workshop, February 15, 2018, Jlab

Plan

- Introduction
- Formalism:
- Non-relativistic EFT and dimer picture
- Quantization condition
- Symmetries of the box and reduction of the quantization condition
- The finite volume spectrum: bound and scattering states
- Conclusions, outlook

Extraction of the observables on the lattice

Motivation:
\hookrightarrow Decays into the three-particle final states:
$K \rightarrow 3 \pi, \eta \rightarrow 3 \pi, \omega \rightarrow 3 \pi$
$a_{1}(1260), a_{1}$ (1420), XYZ-states
Roper resonance
\hookrightarrow Many-body physics on the lattice
Three-particle sector: continuum

- bound states, elastic scattering, rearrangement, breakup...
- 3-particle decay matrix elements (infinite volume)

Three-particle sector: finite volume

- two-particle and three-particle energy levels both below and above the pertinent thresholds
- 3-particle decay matrix elements (finite volume)

Example: $K \rightarrow 2 \pi$ decays

L. Lellouch and M. Lüscher, Comm. Math. Phys. 219 (2001) 31 see also M. Hansen and S. Sharpe, PRD 86 (2012) 016007: Multiple channels

2-pion states: $O_{n}\left(x_{0}\right)=\sum_{\mathbf{k} \in \Omega_{n}} \int_{0}^{L} d^{3} \mathbf{x} d^{3} \mathbf{y} e^{i \mathbf{k}(\mathbf{x}-\mathbf{y})} \phi\left(x_{0}, \mathbf{x}\right) \phi\left(x_{0}, \mathbf{y}\right)$
$K \rightarrow 2 \pi$ decay:

$+$

$$
\begin{aligned}
& \int_{0}^{L} d^{3} \mathbf{y}\langle 0| O_{n}\left(x_{0}\right) \mathcal{L}_{w}(0) K^{\dagger}\left(y_{0}\right)|0\rangle \\
= & g \nu_{n} \int \frac{d P_{0}}{2 \pi i} \frac{e^{i P_{0} x_{0}+M_{K} y_{0}}}{\left(2 W_{\pi}\right)^{2}\left(2 M_{K}\right)\left(P_{0}-2 i W_{\pi}\right)} \frac{p \cot \delta(p)}{p \cot \delta(p)-\frac{2}{\sqrt{\pi} L} Z_{00}\left(1 ; q^{2}\right)}
\end{aligned}
$$

matrix element: $\quad\langle\pi \pi l| H_{w}|K\rangle=\frac{g \cos \delta}{\sqrt{8 \pi}}\left(\frac{p}{M_{K}}\right)^{3 / 2} \frac{1}{\sqrt{p \delta^{\prime}(p)+q \phi^{\prime}(q)}}$

$$
\left.\Longleftrightarrow\left|\langle\pi \pi l| H_{w}\right| K\right\rangle\left.\right|^{2}=\frac{\left|A^{\infty}\right|^{2}}{8 \pi}\left(\frac{p}{M_{K}}\right)^{3} \frac{1}{p \delta^{\prime}(p)+q \phi^{\prime}(q)}, \quad A^{\infty}=g e^{i \delta} \cos \delta
$$

Example: form factors

Timelike e.m. form factor of the pion: H. Meyer, PRL 107 (2011) 072002

Resonance form factors: V. Bernard, D. Hoja, U.-G. Meißner and AR, JHEP 1209 (2012) 023; A. Agadjanov, V. Bernard, U.-G. Meißner and AR, NPB 886 (2014) 1199, NPB (2016) 387; R.A. Briceno and M.T. Hansen, PRD 92 (2015) 074509; PRD 94 (2016) 013008; R.A. Briceno et al., PRD 93 (2016) 114508

> What is the analog in case of three-particle final states?
\hookrightarrow First: study the three-body final states in a finite volume!

Extracting three-particle observables from the lattice

K. Polejaeva and AR, EPJA 48 (2012) 67

Finite volume energy levels determined solely by the S-matrix
M. Hansen and S. Sharpe, PRD 90 (2014) 116003; PRD 92 (2015) 114509

Quantization condition
R. Briceno and Z. Davoudi, PRD 87 (2013) 094507

Dimer formalism, quantization condition
P. Guo, PRD 95 (2017) 054508

Quantization condition in the 1+1-dimensional case
S. Kreuzer and H.-W. Hammer, PLB 694 (2011) 424; EPJA 43 (2010) 229; PLB 673
(2009) 260; S. Kreuzer and H. W. Grießhammer, EPJA 48 (2012) 93

Dimer formalism, numerical solution
M. Mai and M. Döring, EPJA 53 (2017) 240

Three-body unitarity + analyticity (similar in spirit to the present approach)
\hookrightarrow Is the finite-volume spectrum determined solely by the three-body S-matrix elements in the infinite volume?

The strategy

W.-W. Hammer, Jin-Yi Pang and AR, JHEP 09 (2017) 109, JHEP 10 (2017) 115
\hookrightarrow Do not try to extract the amplitudes directly from data, in analogy to Lüscher's formula!
\hookrightarrow Extract low-energy couplings, get amplitudes by solving scattering equations in the infinite volume!

- NREFT: relativistic kinematics will be included later
- Effective couplings: only exponentially suppressed effects at large volumes!
? Is the information about the S-matrix sufficient to uniquely determine the spectrum? Do the off-shell couplings, which are not fixed from matching to the S-matrix, contribute to the finite-volume energies?

NREFT: dimer picture in the two-particle sector

$$
\begin{gathered}
\mathcal{L}=\psi^{\dagger}\left(i \partial_{0}-\frac{\nabla^{2}}{2 m}\right) \psi+\mathcal{L}_{2} \\
\mathcal{L}_{2}=-\frac{C_{0}}{2} \psi^{\dagger} \psi^{\dagger} \psi \psi-\frac{C_{2}}{4}\left(\psi^{\dagger} \nabla^{2} \psi^{\dagger} \psi \psi+\text { h.c. }\right)+\cdots
\end{gathered}
$$

C_{0}, C_{2}, \ldots matched to $p \cot \delta(p)=-\frac{1}{a}+\frac{r}{2} p^{2}+\cdots$
dimer:

$$
\mathcal{L}_{2} \rightarrow \mathcal{L}_{2}^{\text {dimer }}=\sigma T^{\dagger} T+\left(T^{\dagger}\left[f_{0} \psi \psi+f_{1} \psi \nabla^{2} \psi+\cdots\right]+\text { h.c. }\right)
$$

- Dimer framework algebraically equivalent to the three-particle framework
- Higher partial waves can be included: dimers with arbitrary spin
- Can be generalized to the non-rest frames

The scattering equation

$$
\mathcal{M}(\mathbf{p}, \mathbf{q} ; E)=Z(\mathbf{p}, \mathbf{q} ; E)+\int_{\mathbf{k}}^{\Lambda} Z(\mathbf{p}, \mathbf{k} ; E) \tau(\mathbf{k} ; E) \mathcal{M}(\mathbf{k}, \mathbf{q} ; E)
$$

$$
Z(\mathbf{p}, \mathbf{q} ; E)=\frac{1}{\mathbf{p}^{2}+\mathbf{q}^{2}+\mathbf{p q}-m E}+H_{0}+H_{2}\left(\mathbf{p}^{2}+\mathbf{q}^{2}\right)+\cdots
$$

H_{0}, H_{2}, \ldots are related to the couplings h_{0}, h_{2}, \ldots

$$
\tau^{-1}(\mathbf{k} ; E)=k^{*} \cot \delta\left(k^{*}\right)+\underbrace{\sqrt{\frac{3}{4} \mathbf{k}^{2}-m E}}_{=k^{*}}
$$

Finite volume

$$
\begin{gathered}
\mathbf{k}=\frac{2 \pi}{L} \mathbf{n}, \mathbf{n} \in \mathbb{Z}^{3}, \quad \int_{\mathbf{k}}^{\Lambda} \rightarrow \frac{1}{L^{3}} \sum_{\mathbf{k}}^{\Lambda} \\
\mathcal{M}_{L}(\mathbf{p}, \mathbf{q} ; E)=Z(\mathbf{p}, \mathbf{q} ; E)+\frac{8 \pi}{L^{3}} \sum_{\mathbf{k}}^{\Lambda} Z(\mathbf{p}, \mathbf{q} ; E) \tau_{L}(\mathbf{k} ; E) \mathcal{M}_{L}(\mathbf{k}, \mathbf{q} ; E) \\
\tau_{L}^{-1}(\mathbf{k} ; E)=k^{*} \cot \delta\left(k^{*}\right)-\frac{4 \pi}{L^{3}} \sum_{1} \frac{1}{\mathbf{k}^{2}+\mathbf{l}^{2}+\mathbf{k l}-m E}
\end{gathered}
$$

\hookrightarrow Poles in the amplitude \rightarrow finite-volume energy spectrum
$\hookrightarrow k^{*} \cot \delta\left(k^{*}\right)$ fitted in the two-particle sector; H_{0}, H_{2}, \ldots should be fitted to the three-particle energies
$\hookrightarrow S$-matrix in the infinite volume \rightarrow equation with H_{0}, H_{2}, \ldots
\hookrightarrow No "off-shell" effects in the finite volume spectrum!

Quantization condition

The particle-dimer scattering amplitude:

$$
\mathcal{M}_{L}=Z+Z \tau_{L} \mathcal{M}_{L}
$$

The three-particle scattering amplitude:

$$
T_{L}^{(3)}=\tau_{L}+\tau_{L} \mathcal{M}_{L} \tau_{L}=\left(\tau_{L}^{-1}-Z\right)^{-1}
$$

The quantization condition: the three-body energy levels coinside with the poles of $T_{L}^{(3)}$:

$$
\operatorname{det}\left(\tau_{L}^{-1}-Z\right)=0
$$

- The spectrum is determined only by the on-shell input!
- Agrees with: Polejaeva and AR, Hansen and Sharpe, Briceno and Davoudi, Mai and Döring!

Reduction of the quantization condition: symmetries

On the lattice, rotational symmetry \rightarrow octahedral symmetry O_{h} Analog for a sphere $|\mathbf{k}|=$ const for a cube: shells

$$
\mathbf{k}=g \mathbf{k}_{0}, \quad g \in O_{h}
$$

For an arbitrary function of the momentum \mathbf{p}, belonging to a shell s,

$$
f(\mathbf{p})=f\left(g \mathbf{p}_{0}\right)=\sum_{\Gamma} \sum_{i j} T_{i j}^{(\Gamma)}(g) f_{j i}^{(\Gamma)}\left(\mathbf{p}_{0}\right), \quad \Gamma=A_{1}^{ \pm}, A_{2}^{ \pm}, E^{ \pm}, T_{1}^{ \pm}, T_{2}^{ \pm}
$$

Projecting back the components:

$$
\frac{G}{s_{\Gamma}} f_{j i}^{(\Gamma)}\left(\mathbf{p}_{0}\right)=\sum_{g \in O_{h}}\left(T_{i j}^{(\Gamma)}(g)\right)^{*} f\left(g \mathbf{p}_{0}\right), \quad G=\operatorname{dim}\left(O_{h}\right)=48
$$

The quantization condition in the new basis partially diagonalizes

Reduction of the equation

The equation determining the energy spectrum:

$$
f(\mathbf{p})=\frac{8 \pi}{L^{3}} \sum_{s} \sum_{g \in O_{h}} \frac{\vartheta(s)}{G} Z\left(\mathbf{p}, g \mathbf{k}_{0}(s)\right) \tau(s) f\left(g \mathbf{k}_{0}(s)\right)
$$

$\vartheta(s)$: the multiplicity of the shell s
Projecting the equation on a given irrep Γ :

$$
f_{i}^{(\Gamma)}(r)=\frac{8 \pi}{L^{3}} \sum_{s} \frac{\vartheta(s) \tau(s)}{G} \sum_{j} Z_{i j}^{(\Gamma)}(r, s) f_{j}^{(\Gamma)}(s) .
$$

The quantization condition partially diagonalizes

$$
\operatorname{det}\left(\tau(s)^{-1} \vartheta(s)^{-1} \delta_{r s} \delta_{i j}-\frac{8 \pi}{L^{3}} \frac{1}{G} Z_{i j}^{(\Gamma)}(r, s)\right)=0
$$

The finite-volume spectrum in the \boldsymbol{A}_{1} irrep, CM frame

- $m=a=1, \Lambda=225, H_{0}(\Lambda)=0.192$
- The spectrum both below and above the three-particle threshold

Bound-state spectrum: $E=-1.016$ and $E=-10$

Three-particle: $\frac{C}{L^{3 / 2}} \exp \left(-\frac{2}{\sqrt{3}} \kappa L\right)$
Particle-dimer: $\frac{C^{\prime}}{L} \exp \left(-\frac{2}{\sqrt{3}} \sqrt{\kappa^{2}-a^{-2}} L\right)$
... or, a linear combination thereof

Scattering states: particle-dimer and 3-particle

$\Delta E=\frac{12 \pi a}{L^{3}}-\frac{12 a^{2}}{L^{4}} \mathcal{I}+\frac{12 a^{3}}{\pi L^{5}}\left(\mathcal{I}^{2}+\mathcal{J}\right)+O\left(L^{-6}\right), \quad \mathcal{I} \simeq-8.914, \mathcal{J} \simeq 16.532$

Pushing up the energy level by a shallow bound state

? Where is the energy level, corresponding to the displaced particle-dimer threshold?
! The shallow bound state is pushing it up

- Displaced threshold can be easily identified!

Conclusions

- An EFT formalism in a finite volume is proposed to analyze the data in the three-particle sector
- The low-energy three-body couplings are fitted to the spectrum; S-matrix is obtained through the solution of equations
- A systematic approach: allows the inclusion of higher partial waves, derivative couplings, two \rightarrow three transitions, relativistic kinematics,...
- Equivalent to other known approaches, much easier to use!
- Reduction of the quantization condition is possible, according to the octahedral symmetry
- Outlook: Three-particle Lellouch-Lüscher formula + ...

Spare: The expansion of the kernel

The kernel is invariant under $O_{h}: Z(g \mathbf{p}, g \mathbf{q})=Z(\mathbf{p}, \mathbf{q})$

$$
\begin{aligned}
Z_{n m}^{\left(\Gamma \Gamma^{\prime}, i j\right)}(r, s) & =\sum_{g, g^{\prime} \in O_{h}}\left(T_{i n}^{(\Gamma)}\left(g^{\prime}\right)\right)^{*} Z\left(g^{\prime} \mathbf{p}_{0}(r), g \mathbf{k}_{0}(s)\right) T_{j m}^{\left(\Gamma^{\prime}\right)}(g) \\
& =\sum_{g, g^{\prime} \in O_{h}}\left(T_{i n}^{(\Gamma)}\left(g^{\prime}\right)\right)^{*} Z(\underbrace{g^{-1} g^{\prime}}_{=g^{\prime \prime}} \mathbf{p}_{0}(r), \mathbf{k}_{0}(s)) T_{j m}^{\left(\Gamma^{\prime}\right)}(g) \\
& =\sum_{g, g^{\prime \prime} \in O_{h}} \sum_{k}\left(T_{i k}^{(\Gamma)}(g)\right)^{*}\left(T_{k n}^{(\Gamma)}\left(g^{\prime \prime}\right)\right)^{*} Z\left(g^{\prime \prime} \mathbf{p}_{0}(r), \mathbf{k}_{0}(s)\right) T_{j m}^{\left(\Gamma^{\prime}\right)}(g) \\
& =\sum_{g^{\prime \prime} \in O_{h}} \sum_{k} \frac{G}{s_{\Gamma}} \delta_{\Gamma \Gamma^{\prime}} \delta_{i j} \delta_{k m}\left(T_{k n}^{(\Gamma)}\left(g^{\prime \prime}\right)\right)^{*} Z\left(g^{\prime \prime} \mathbf{p}_{0}(r), \mathbf{k}_{0}(s)\right) \\
& =\frac{G}{s_{\Gamma}} \delta_{\Gamma \Gamma^{\prime}} \delta_{i j} \sum_{g \in O_{h}}\left(T_{m n}^{(\Gamma)}(g)\right)^{*} Z\left(g \mathbf{p}_{0}(r), \mathbf{k}_{0}(s)\right) \\
& =\frac{G}{s_{\Gamma}} \delta_{\Gamma \Gamma^{\prime}} \delta_{i j} Z_{n m}^{(\Gamma)}(r, s)
\end{aligned}
$$

Spare: Avoided level crossing

- Avoided level crossing between 3-particle and particle-dimer states
- Where is the (displaced) particle-dimer threshold?

