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We express our interest in creating a secondary K0
L beam in Hall D to be used with the GlueX

experimental setup for spectroscopy of excited hyperons through formation as well as production
processes.

At first stage an electron beam from CEBAF, with a current in the range Ie = 3 � 5 µA, will
interact with a radiator to produce bremsstrahlung photon beam. The collimated photon beam,
impinging on secondary 1-2 radiation length Be target installed 85 m downstream the tagger radiator
will produce a flow of K0

L mesons, which then interacts with a physics target installed 16 m further
downstream. To stop the photon beam a thick lead absorber (l ⇡ 30 radiation lengths) will be
inserted into the beamline and will be followed by a sweeping magnet to deflect produced charged
particles flow. Our preliminary simulations show that neutron rate on physics target will be less than
the kaon rate for pKL > 2 GeV/c, this neutron rate will only be an order of magnitude larger than
the K-long rate for momenta in the range of 1 < P < 2GeV/c and increase at very low momenta,
which will be cut out with the time-of-flight. This is one of the great advantages of K0

L production
in electromagnetic interactions, as opposed to the case of primary proton beams, where the rate
of neutrons is about 103 times higher than that of K0

L [1], which creates a huge rate of neutron
initiated events.

We estimated the flux of K0
L beam on the GlueX physics target in the range of few times 103/sec

up to 104/sec, to be compared to about 102KL/sec used at SLAC in LASS experiment [2] and
almost comparable to charged kaon rates obtained at AGS [3] and elsewhere in the past. Momenta
of neutral kaons will be measured using time-of-flight technique. Our studies show �p/p ⇡ 0.5% of
K0

L momenta can be achieved.
These measurements will allow studies of very poorly known multiplets of ⇤, ⌃, ⌅, and ⌦ hyperons

with unprecedented statistical precision, and have a potential to observe dozens of predicted (but
heretofore unobserved) states and to establish the quantum numbers of already observed hyperons
listed in PDG [4].

The possibility to run with polarized target (e.g. FROST) , and measuring recoil polarization of
hyperons will open up a new avenue to the complete experiment.

⇤
Contact person, email:mamaryan@odu.edu.
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new Hall-D

CEBAF at 12 GeV

�

How to make a kaon beam?



Figure 14: Schematic view of Hall D beamline on the way e ! � ! K
L

. Electrons first hit
the tungsten radiator, then photons hit the Be target assembly, and finally, neutral kaons hit the
LH

2

/LD
2

cryotarget. The main components are CPS, Be target assembly, beam plug, sweep mag-
net, and pair spectrometer. See the text for details.

and the LH
2

/LD
2

target (located inside Hall D detector) was taken as 16 m in our calculations It
can be increased up to 20 m.

10.1.1 Compact Photon Source: Conceptual Design

An intense high-energy gamma source is a prerequisite for the production of the K
L

beam needed
for the new experiments described in this proposal. In 2014, Hall A Collaboration has been dis-
cussed a novel concept of a Compact Photon Source (CPS) [116]. It was developed for a Wide-
Angle Compton Experiment proposed to PAC43 [117]. Based on these ideas, we suggested (see
Ref. [118]) to use the new concept in this experiment. A possible practical implementation ad-
justed to the parameters and limitations of the available infrastructure is discussed below. The
vertical cut of the CPS model design, and the horizontal plane view of the present Tagger vault
area with CPS installed are shown in Fig. 15.

The CPS design combines in a single properly shielded assembly all elements necessary for the
production of the intense photon beam, such that the overall dimensions of the setup are limited
and the operational radiation dose rates around it are acceptable. Compared to the alternative,
the proposed CPS solution presents several advantages: much lower radiation levels, both prompt
and post-operational due to the beam line elements’ radio-activation at the vault. The new de-

26

Hall-D beamline and GlueX Setup

24m
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K0L beam (continued)

-Momentum measured with TOF

-K0L flux mesured with pair spectrometer

-Electron beam with Ie = 5µA

-Delivered with 64 ns bunch spacing avoids  
overlap in the range of P=0.3-10.0 GeV/c  

-Side remark: Physics case with polarized  
          targets is under study and feasible  
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Rate of neutrons and K0L on GlueX target

• With a proton beam ratio n/KL = 103-104

VOLUME 22, NUMBER 18 PHYSICAL REVIEW LETTERS 5 Mxv 1969
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FIG. 2, Comparison of the neutron and K2 fluxes at
the hydrogen bubble chamber for 2' production with 16-
GeV electrons.

sponding K, spectrum at the chamber. " The
relative normalization of the E2 and neutron dis-
tributions is accurate to within 40%. As seen in
Fig. 2, the neutron momentum spectrum at the
chamber peaks below 1.0 GeV/c and the neutron-
to-K, ' ratio decreases by an order of magnitude
over the neutral-beam momentum range from 2
to 5 GeV/c.
We wish to thank A. Kilert, W. Walsh, R. Fri-

day, D. Mcshurley, and A. Baumgarten for help
in design and construction of the neutral beam,
R. Watt and the bubble chamber staff, and our
scanning and measuring staff. We are grateful
for several discussions with Y. S. Tsai.

*Work supported by the U. S. Atomic Energy Commis-
sion.
~A. Barna et al. , Phys. Rev. Letters 18, 360 (1967).
2A. M. Boyarski et al. , in "Stanford Linear Accelera-

tor Center Users Handbook, " Stanford University, Stan-
ford, Calif. , Revised, 1968 (unpublished).
3A. Boyarski et al. , Phys. Rev. Letters 18, 363
(1967).
4Stanley M. Flatte et al. , Phys. Rev. Letters 18, 366
(1967).
SY. S. Tsai, in "Stanford Linear Accelerator Center

Users Handbook, " Stanford University, Stanford, Calif.
1966 (unpublished). References to previous work are
given in this paper.
The y filter consisted of 147 g/cm of tungsten, 173

g/cm of lead, and 50 g/cm of lithium hydride.
A. Firestone, thesis, Yale University, 1967 (unpub-

lished).

H. W. K. Hopkins, T. C. Bacon, and F. R. Eisler,
Phys. Rev. Letters 19, 185 (1967).
All K2 parameters used were taken from the compi-

lation of the Particle Data Group, University of Cali-
fornia Radiation Laboratory Report No. 8030, Revised,
1968 (to be published).
The analysis was done using the values 0, 0.022,

and -0.25 for ( and ~ (parameters of the leptonic de-
cays) and A (parameter for the r+r & decay), respec-
tively. Then the analysis was repeated using simple
phase space for all decay modes. The K2 spectra re-
sulting from the two analyses agreed well within statis-
tical uncertainties.
~~V. Cook et al. , Phys. Rev. Letters 7, 182 (1961);
V. Cook et al. , Phys. Rev. 123, 320 (1961); A. N. Did-
dens, E. W. Jenkins, T. F. Kycia, and K. F. Riley,
Phys. Rev. Letters 10, 262 (1963); W. Galbraith et al. ,
Phys. Rev. 138, B913 (1965).
~2W. V. Hassenzahl, thesis, University of Illinois,
1967 (unpublished).
This %5% systematic uncertainty in attenuation

completely dominates the systematic uncertainties due
to solid angle or charge integration.
~4These extrapolations have been made from curves
given in Ref. 5 and have normalization uncertainties of
20 to 40%.
~Sour calculation is identical to that made by Y. S.
Tsai et al. , Phys. Rev. Letters 19, 915 (1967), with
the exceptions that (1) the q(1020) decays into K~ K2
rather than into IC K, and (2) the slope in t of the in-
coherent differential cross section is taken to be 5
(GeV/c) rather than 10 (GeV/c), as indicated by
the recent p(1020) photoproduction data of W. G. Jones
et al. , Phys. Rev. Letters 21, 586 (1968).
Values for 0 {K2p) and cr(np) were taken to be 20 and

38 mb, respectively.
~VMeasured values of 0(np-pp7I ) do not appear in
the literature. Below 2.5 GeV/c, we have used the re-
lation 0{np—pp~ ) =20{pp—pp& ) expected from the
one-pion-exchange model with I= 2 dominance at the
pion-nucleon scattering vertex. Above 2.5 GeV/c, we
have used the relation 0(np-pp7t ) =o(pp-np~ ) ex-
pected from the one-pion-exchange model. Values for
0 (pp —ppm ) were taken from A. F. Dunaitsev and Y. D.
Prokoshkin, Zh. Eksperim. i Teor. Fiz. 36, 1656
(1959) ttranslation: Soviet Phys. —JETP 36, 1179
(1959)]; D. V. Bugg et al. , Phys. Rev. 133, B1017
(1964); K. R. Chapman et al. , Phys. Letters 11, 253
(1964); and F. F. Chen et al. , Phys. Rev. 103, 211
(1956). Values for a(pp-np~ ) were taken from
T. Ferbel et al. , Phys. Rev. 137, B1250 (1965); H. C.
Dehne et al. , Phys. Rev. 136, B843 {1964);K. Bock-
mann et al. , Nuovo Cimento 42A, 954 (1966); and
T. Ferbel, J. A. Johnson, H. L. Kraybill, J. Sandweiss,
and H. D. Taft, Phys. Rev. 173, 1307 (1968).
The K2 spectrum at 2' for 16-GeV electrons has

been extrapolated from 1.75 to 0.9 r.l. Be, using the
curves given in Ref. 5.
The normalization of the neutron spectrum was deter-

mined by measuring R to be 3.2 +0.8 for the 0.9-r.l.
data.
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III.3. EXPERIMENTS 53

Table III-2: Comparison of the KL production yield. The BNL AGS kaon and neutron yields are
taken from RSVP reviews in 2004 and 2005. The Project X yields are for a thick target, fully
simulated with LAQGSM/MARS15 into the KOPIO beam solid angle and momentum acceptance.

Beam energy Target (lI) p(K) (MeV/c) KL/s into 500 µsr KL : n (En > 10 MeV)

BNL AGS 24 GeV 1.1 Pt 300-1200 60⇥106 ⇠1 : 1000
Project X 3 GeV 1.0 C 300-1200 450⇥106 ⇠1 : 2700

quality data sets from the COSY/ANKE experiment [77]. One such benchmark, shown in Fig. III-
8, is an absolute prediction of forward K+ production yield on carbon and is in excellent agreement
with COSY/ANKE data. The estimated (LAQGSM/MARS15) kaon yield at constant beam power
(yield/Tp) is shown in Fig. III-9. The yield on carbon saturates at about 5 GeV, and the Tp = 3.0 GeV
yield is about a factor of about two times less than the peak yield in the experimentally optimal an-
gular region of 17–23 degrees which mitigates the high forward flux of pions and neutrons. The 3.0
GeV operational point is a trade-off of yield with accelerator cost. The enormous beam power of
Project X more than compensates for operation at an unsaturated yield point.

The comparative KL production yields from thick targets fully simulated with LAQGSM/MARS15
are shown in Table III-2.

The AGS KL yield per proton is 20 times the Project X yield; however, Project X compensates
with a 0.5 mA proton flux that is 150 times the RSVP goal of 1014 protons every 5 seconds. Hence
the neutral kaon flux would be eight times the AGS flux goal into the same beam acceptance. The
nominal five-year Project X run is 2.5 times the duration of the KOPIO AGS initiative and hence
the reach of a Project X K0

L ! p

0
nn̄ experiment could be 20 times the reach of the RSVP goals.

Figure III-7: Illustration of the KOPIO concept for Project X. Precision measurement of the photon
arrival time through time-of-flight techniques is critical. Good measurement of the photon energies
and space angles in a high rate environment is also critical to controlling backgrounds.

Project X Physics

• ProjectX (Fermi Lab) arXiv:1306.5009

KL beam can be used to study rare decays 
However it will be extremely difficult to use for spectroscopy  

measurements because of n/K Ratio



9

K0L beam

• Electron beam 

• Radiator (rad. length) 

• Be target (R=3cm) 

• LH2 target(L=30cm) 

• Distance Be-LH2 

• KL Rate/sec

Ee = 12GeV ; Ie = 5µA

~

10%

L = 40cm

104

R = 3cm

24m
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Not everything could be measured with !
electron and photon beams

What can be done with kaon beams ?



FIG. 4 (color online). Results for baryon excited states using the ensemblewithm! ¼ 391 MeV are shownversus JP. Colors are used to
display the flavor symmetry of dominant operators as follows: blue for 8F inN,!,", and#; beige for 1F in!; yellow for 10F in$,",#,
and%. The lowest bands of positive- and negative-parity states are highlighted within slanted boxes. The eight excited states of ", with
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Low Lying states

Thick borders: Hybrid states
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3

and Karl [3]. The 12 excited states were predicted up to 2 GeV/c2, whereas only ⌅(1820) is identified as JP = 3/2�

state with three stars.

FIG. 1. Black bars: Predicted ⌅ spectrum based on the quark model calculation [3]. Colored bars: Observed states. The two
ground states and ⌅(1820) are shown in the column of JP = 1/2+, 2/3�, respectively. Other unknown JP states are plotted in
the rightest column. The number represents the mass and the size of the box corresponds to the width of each state.

Recently it is pointed out that there are two distinct excitation modes when a baryon contains one heavy flavor
inside, and the separation of these two modes possibly good enough even at the strange quark mass [4]. Baryons
which contain single (Qqq) and double (QQq) strange and/or charm flavors might be understood as a “dual” system
based on the spatial parametrization concerning a diquark contribution of (qq) and (QQ). In this sense, it should be
noted that cascades and charmed baryons are expected to be closely related.

The ⌅⇤ states were intensively searched for mainly in bubble chamber experiments using the K�p reaction in ’60s �
’70s. The cross section was estimated to be an order of 1 � 10 µb at the beam momentum up to ⇠10 GeV/c. In ’80s
� ’90s, the mass or width of ground or some excited states were measured with a spectrometer in the CERN hyperon
beam experiment. There has been a few experiments to study cascade baryons with the missing mass technique. In
1983, the production of ⌅⇤ resonances up to 2.5 GeV/c2 were reported from the missing mass measurement of the
p(K�,K+) reaction, using multi-particle spectrometer at the Brookhaven National Laboratory [5]. Figure 2 shows
squared missing mass spectra of p(K�,K+) reaction. With ten times intense kaon beam combined with 5 � 10
times better resolution, each sates is expected to be clearly stated even without tagging any decay particles in the
p(K�,K+) reaction.

II. THE PHYSICS CASE

The physics case and experimental method are reviewed in the following.

Status of 

well known 

⌅⇤
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H. Takahashi / Nuclear Physics A 914 (2013) 553–558 555

Fig. 1. Low-lying Ω baryon spectrum predicted by the non-relativistic quark model (CIK) [3], the relativized quark
model (CI) [4], the Glozman–Riska model (GR) [5], the algebraic model (BIL) [6], the recent non-relativistic quark
model (PR) [7], the Skyrme model (Oh) [8], and large Nc analysis [9]. The experimental data were from the particle
listings by the Particle Data Group [2].

The spectroscopy of Ω∗ resonances to confirm known three states and to search for miss-
ing states can be performed in early stage of the S = −3 programs at J-PARC. The production
cross-sections of Ω(2250) and Ω(2470) are 0.63 µb [16] and 0.29 µb [17], respectively, for the
K− beam momentum of 11 GeV/c. If we use a liquid hydrogen target with the thickness of
1 g/cm2, and assume that the 11 GeV/c K− beam intensity is 1 × 105/spill and overall detec-
tion efficiency is 10%, the numbers of measured Ω(2250) and Ω(2470) are expected to be about
22/day and 10/day, respectively.

3. Beam lines

Since the threshold of the elementary process K−p → Ω−K+K0 is 3.1 GeV/c, charged
secondary beam with the higher momentum than that of existing K1.8 beam line is required to
carry out Ω− experiments.

The construction of a new primary proton beam line (Fig. 2) is now scheduled to be completed
in 2016. The beam line “high-p” is branched from the existing primary beam line at the middle of
the beam-switching yard between the Main Ring and the HD-hall. H. Noumi proposed to modify
it to a secondary beam line “π15” in the next a few years by replacing beam-splitting magnets
with a production target and by installing several additional beam-transport magnets [18]. The
π15 beam line is designed to provide high-resolution (dp/p ∼ 0.1%) beams with the momentum
up to 15 GeV/c. Secondary beams are generated by a production target with the thickness equiv-
alent to 15-kW beam loss and delivered to the HD-hall. The beams are dispersively focused just
after the entry to the hall, where their momenta are measured with some tracking devices, and
then transported and focused to a target in the experimental area. In order to achieve high reso-
lution, second-order aberrations are eliminated at the dispersive focus by using three sextupole

Status of 

only one well known state? 

⌦�⇤
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. 
KEK-HN-2017, Tsukuba, Japan, January 2017 11/12/2016 Igor Strakovsky    24 

x�KL rate is 105 KL/s. 
x�Uncertainties correspond to 100 days of running time. 
x�Cross section uncertainty estimates (statistics only) for  

Expected Cross Sections vs Bubble Chamber Data  

Courtesy of Simon Taylor, KL2016 
                     Mark Manley, KL2016 

x�GlueX measurements will span cosT from��0.95 to 0.95 in c.m. above W = 1490 MeV. 

BC Data 

Expected  
GlueX Data 

KLp→π+/ KLp→KSp 

arXiv: 1604.02141More details in KL2016 Workshop Proceedings

 104 KL/s
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FIG. 4. (Color online) Total cross section results with individual resonances switched off (a) for K− + p → K+ + Ξ− and (b)
for K− + p → K0 + Ξ0. The blue lines represent the full result shown in Figs. 2 and 3. The red dashed lines, which almost
coincide with the blue lines represent the result with Λ(1890) switched off. The green dash-dotted lines represent the result
with Σ(2030) switched off and the magenta dash-dash-dotted lines represent the result with Σ(2250)5/2− switched off.
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FIG. 5. (Color online) Kaon angular distributions in the center-of-mass frame (a) for K− + p → K+ + Ξ− and (b) for
K− + p → K0 + Ξ0. The blue lines represent the full model results. The red dashed lines show the combined Λ hyperons
contribution. The magenta dash-dotted lines show the combined Σ hyperons contribution. The green dash-dash-dotted line
corresponds to the contact term. The numbers in the upper right corners correspond to the centroid total energy of the system
W . Note the different scales used. The experimental data (black circles) are the digitized version as quoted in Ref. [50] from the
original work of Refs. [31–34, 36, 37] for the K− +p → K++Ξ− reaction and of Ref. [30, 36, 37, 40] for the K− +p → K0+Ξ0

reaction.

p → K+ + Ξ− and K− + p → K0 + Ξ0 are shown in
Figs. 5(a) and 5(b), respectively, in the energy domain up
to W = 2.8 GeV for the former and up to W = 2.5 GeV
for the latter reaction. Overall, the model reproduces
the data quite well. There seem to be some discrepancies
for energies W = 2.33 to 2.48 GeV in the charged Ξ−

production. Our model underpredicts the yield around
cos θ = 0. As in the total cross sections, the data for the
neutral Ξ0 production are fewer and less accurate than

for the charged Ξ− production. In particular, the Ξ0

production data at W = 2.15 GeV seems incompatible
with those at nearby lower energies and that the present
model is unable to reproduce the observed shape at back-
ward angles. It is clear from Figs. 5(a) and 5(b) that the
charged channel shows a backward peaked angular dis-
tributions, while the neutral channel shows enhancement
for both backward and forward scattering angles (more
symmetric around cos θ = 0) for all but perhaps the high-
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p → K+ + Ξ− and K− + p → K0 + Ξ0 are shown in
Figs. 5(a) and 5(b), respectively, in the energy domain up
to W = 2.8 GeV for the former and up to W = 2.5 GeV
for the latter reaction. Overall, the model reproduces
the data quite well. There seem to be some discrepancies
for energies W = 2.33 to 2.48 GeV in the charged Ξ−

production. Our model underpredicts the yield around
cos θ = 0. As in the total cross sections, the data for the
neutral Ξ0 production are fewer and less accurate than

for the charged Ξ− production. In particular, the Ξ0

production data at W = 2.15 GeV seems incompatible
with those at nearby lower energies and that the present
model is unable to reproduce the observed shape at back-
ward angles. It is clear from Figs. 5(a) and 5(b) that the
charged channel shows a backward peaked angular dis-
tributions, while the neutral channel shows enhancement
for both backward and forward scattering angles (more
symmetric around cos θ = 0) for all but perhaps the high-

Cascade production on proton with K beam 

Estimated measurement 
for 10 days exposition 

Existing measurements in 
charged channels 

World Data on 

Simulated with GlueX 
104 KL/sec, one day of running

Jackson, Oh, Haberzettl, Nakayama 
 Phys. Rev. C 91, 065208 (2015)

⌅
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Evolution of an Early Universe at Freeze-out
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Figure 1: Ratio µS/µB at leading order as a function of the temperature. The two curves are the
HRG model result obtained with the well-known states from the PDG2012 (full black line) and
Quark Model (dotted red line).

The lattice results for this observable are shown in Fig. 1, in comparison to the HRG model
results based on the well-established states from the PDG2012 (full, black line) and the
Quark Model (dotted, red line). The improvement due to the inclusion of the QM states
is evident. However, for other observables such as χS

4 /χ
S
2 and χus

11 , the agreement between
HRG model and lattice gets worse when the QM states are included (see the two panels of
Fig. 2).
By observing these plots we can already try to understand what the issue could be. The ratio
χS
4 /χ

S
2 is proportional to the average strangeness squared in the system. The fact that the

QM overestimates the data means that it either predicts too many multi-strange states or not
enough S = 1 states. Analogously, χus

11 measures the correlation between u and s quarks: it
is positive for baryons and negative for mesons. The fact that the QM overestimates the data
means that it either predicts too many strange baryons or not enough strange mesons.
In order to solve this ambiguity, we decided to look at each particle family separately, divid-
ing them according to their baryonic and strangeness content. In order to do so, we defined
the partial pressures for each family in the hadronic phase, according to the following equa-
tions [15]:

P (µ̂B, µ̂S) = P00 + P10 cosh(µ̂B) + P0|1| cosh(µ̂S)

+ P1|1| cosh(µ̂B − µ̂S)

+ P1|2| cosh(µ̂B − 2µ̂S)

+ P1|3| cosh(µ̂B − 3µ̂S) , (5)

where µ̂i = µi/T , and the indexes are PB|S|.
Our results are shown in Fig. 3. The first five panels show the contributions of strange
mesons, non-strange baryons and baryons with |S| = 1, 2, 3 respectively. All lattice results
are continuum-extrapolated, with the exception of the strange mesons, for which the finite-
Nt lattice data do not scale. The last panel shows the relative contribution of the single

102
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missing states

Chemical potential 

YSTAR2016 Proceedings arXiv:
1701.07346

How Important are Missing Hyperons for the



Figure 38: The I = 1/2K⇡ scattering P -wave phase-shift function of m
K⇡

. The left panel shows
experimental results from LASS [97] and Estabrooks et al. [96]. The gray band represents the
fit to the ⌧ decay data by Boito et al. [114]. On the right panel, we present results of expected
measurement for 100 days of running. The statistical errors on the right panel are increased by
factor of 10 for a better visibility.

topics at heavy-ion colliders.

Besides hyperon spectroscopy, the experimental data obtained in the strange meson sector in the
reactions K

L

p ! K±⇡⌥p and K
L

p ! K
S

⇡±n(p) will provide precise and statistically significant
data for experimental studies of the K⇡ system. This will allow a determination of quantum num-
bers of strange meson resonances in S- (including (800)), P-, D-, and higher-wave states. It will
also allow a determination of phase shifts to account for final-state K⇡ interactions. Measurements
of K⇡ form factors will be important input for Dalitz-plot analyses of D-meson and charmless B
mesons with K⇡ in final state. These will be important inputs for obtaining accurate an value of
the CP-violating CKM matrix element V

us

and testing the unitarity relation, in particular through
the measurement of the ⌧ ! K⇡⌫

⌧

decay rate.

The approval and construction of the proposed facility at JLab will be unique in the world. The
high-intensity secondary beam of K

L

(3⇥ 10

4 K
L

/s) would be produced in electromagnetic inter-
actions using the high-intensity and high-duty-factor CEBAF electron beam with very low neutron
contamination as was done at SLAC in the 1970s; but now, with three orders of magnitude higher
intensity. The possibility to perform similar studies with charged kaon beams is under discussion
at J-PARC with intensities similar to those proposed for the K

L

beam at JLab. If these proposals
are approved, the experimental data from J-PARC will be complementary to those of the proposed
K

L

measurements.

Below in Table 1, we present the expected statistics for 100 days of running with a LH
2

target in
the GlueX setup at JLab. The expected statistics for the 5 major reactions are very large. There are
however, two words of cautions at this stage. These numbers correspond to an inclusive reaction
reconstruction, which is enough to identify the resonance, but might not be enough to uncover its
nature. The need for exclusive reconstruction to extract polarization observables further decrease
the expected statistics, e.g., from 4M to 400k events in the K⌅ case. These statistics, however,
would allow a precise measurement of the double-differential polarization observables with statis-
tical uncertainties on the order of 5–10%. Secondly, kaon flux has a maximum around W = 3 GeV,
which decreases rapidly towards high/low W ’s. Thus, the 100 days of beam time on the LH

2

are

51
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measurement for 100 days of running. The statistical errors on the right panel are increased by
factor of 10 for a better visibility.
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Summary

-KL Facility is feasable at JLAB with intensity ~104/s

-It has a potential to observe dozens of missing hyperons

-Significant improvement in K-pi scattering database

Looking forward to learn more during this workshop!


