The K_L Facility at

Moskov Amaryan

$\pi - K$ Interactions Workshop, February 14-15, 2018

A Letter of Intent to Jefferson Lab PAC-43.

Physics Opportunities with a Secondary K_L^0 Beam at JLab.

Moskov J. Amaryan (spokesperson),^{1,*} Yakov I. Azimov,² William J. Briscoe,³ Eugene Chudakov,⁴
Pavel Degtyarenko,⁴ Gail Dodge,¹ Michael Döring,³ Helmut Haberzettl,³ Charles E. Hyde,¹ Benjamin C. Jackson,⁵
Christopher D. Keith,⁴ Ilya Larin,¹ Dave J. Mack,⁴ D. Mark Manley,⁶ Kanzo Nakayama,⁵ Yongseok Oh,⁷
Emilie Passemar,⁸ Diane Schott,³ Alexander Somov,⁴ Igor Strakovsky,³ and Ronald Workman³
¹Old Dominion University, Norfolk, VA 23529
²Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia
³The George Washington University, Washington, DC 20052
⁴Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606
⁵The University of Georgia, Athens, GA 30602
⁶Kent State University, Daegu 702-701, Korea
⁸Indiana University, Bloomington, IN 47405 (Dated: May 15, 2015)

Strange Hadron Spectroscopy with a Secondary K_L Beam at GlueX

S. Adhikari¹², H. Al Ghoul¹³, A. Ali¹⁷, M. J. Amaryan^{40,*,†}, E. G. Anassontzis², A. V. Anisovich^{20,14}, A. Austregesilo³², M. Baalouch⁴⁰, F. Barbosa³², A. Barnes⁹, M. Bashkanov^{10,†}, T. D. Beattie⁴⁴, R. Bellwied²², V. V. Berdnikov³⁷, T. Black⁴¹, W. Boeglin¹², W. J. Briscoe¹⁵, T. Britton³², W. K. Brooks⁴⁶, B. E. Cannon¹³, E. Chudakov³², P. L. Cole²³, V. Crede¹³, M. M. Dalton³², A. Deur³², P. Degtyarenko³², S. Dobbs⁴², G. Dodge⁴⁰, A. G. Dolgolenko²⁹, M. Döring^{15,32}, M. Dugger¹, R. Dzhygadlo¹⁷, R. Edwards³², H. Egiyan³², S. Eidelman^{4,31}, A. Ernst¹³, A. Eskandarian¹⁵, P. Euginio¹³, C. Fanelli³⁵, S. Fegan³⁶, A. M. Foda⁴⁴, J. Frye²⁴, S. Furletov³², L. Gan⁴¹, A. Gasparian³⁹, G. Gavalian³², V. Gauzshtein^{47,48}, N. Gevorgyan⁵⁰, D. I. Glazier¹⁶, K. Goetzen¹⁷, J. Goity^{32,21}, V. S. Goryachev²⁹, L. Guo¹², H. Haberzettl¹⁵, M. Hadžimehmedović⁴⁹, H. Hakobyan⁴⁶, A. Hamdi¹⁷, S. Han⁵³, J. Hardin³⁵, A. Hayrapetyan¹⁹, T. Horn⁷, G. M. Huber⁴⁴, C. E. Hyde⁴⁰, D. G. Ireland¹⁶, M. M. Ito³², B. C. Jackson¹⁸, N. S. Jarvis⁶, R. T. Jones⁹, V. Kakoyan⁵⁰, G. Kalicy⁷, M. Kamel¹², C. D. Keith³², C. W. Kim¹⁵, F. J. Klein¹⁵, C. Kourkoumeli², S. Kuleshov⁴⁶, I. Kuznetsov^{47,48}, A. B. Laptev³⁰, I. Larin²⁹, D. Lawrence³², M. Levillain³⁹, W. I. Levine⁶, K. Livingston¹⁶, G. J. Lolos⁴⁴, V. E. Lyubovitskij^{47,48,33,46}, D. Mack³², M. Mai¹⁵, D. M. Manley²⁷, U.-G. Meißner^{20,54}, H. Marukyan⁵⁰, V. Mathieu²⁴, P. T. Mattione³², M. Matveev¹⁴, V. Matveev²⁹, M. McCaughan³², M. McCracken⁶, W. McGinley⁶, J. McIntyre⁹, C. A. Meyer⁶, R. Miskimen³⁴, R. E. Mitchell²⁴, F. Mokaya⁹, V. Mokeev³², K. Nakayama¹⁸ F. Nerling¹⁷, Y. Oh²⁸, H. Osmanović⁴⁹, A. I. Ostrovidov¹³, R. Omerović⁴⁹, Z. Papandreou⁴⁴, K. Park³², E. Pasyuk³², M. Patsyuk³⁵, P. Pauli¹⁶, R. Pedroni³⁹, M. R. Pennington¹⁶, L. Pentchev³², K. J. Peters¹⁷, W. Phelps¹², E. Pooser³², B. Pratt⁹, J. W. Price⁵, N. Qin⁵³, J. Reinhold¹², D. Richards³², D.-O. Riska¹¹, B. G. Ritchie¹, J. Ritman^{3,26,†}, L. Robison⁴², D. Romanov³⁷, H-Y. Ryu⁴³, C. Salgado³⁸, E. Santopinto²⁵, A. V. Sarantsev^{20,14}, R. A. Schumacher⁶, C. Schwarz¹⁷, J. Schwiening¹⁷, A. Semenov⁴⁴, I. Semenov⁴⁴, K. K. Seth⁴², M. R. Shepherd²⁴, E. S. Smith³², D. I. Sober⁷, D. Sokhan¹⁶, A. Somov³², S. Somov³⁷, O. Soto⁴⁶, N. Sparks¹, J. Stahov⁴⁹, M. J. Staib⁶, J. R. Stevens^{51,†}, I. I. Strakovsky^{15,†}, A. Subedi²⁴, A. Švarc⁴⁵, A. Szczepaniak^{24,32}, V. Tarasov²⁹, S. Taylor³², A. Teymurazyan⁴⁴, A. Tomaradze⁴², A. Tsaris¹³, G. Vasileiadis², D. Watts¹⁰, D. Werthmüller¹⁶, N. Wickramaarachchi⁴⁰, T. Whitlatch³², M. Williams³⁵, B. Wojtsekhowski³², R. L. Workman¹⁵, T. Xiao⁴², Y. Yang³⁵, N. Zachariou¹⁰, J. Zarling²⁴, Z. Zhang⁵³, B. Zou⁸, J. Zhang⁵², X. Zhou⁵³, B. Zihlmann³²

Currently 178 members from 54 institutions

How to make a kaon beam?ryThomas Jefferson National Acceleration and Acceleration

Aerial View

Hall-D beamline and GlueX Setup

K⁰_L beam (continued)

- -Electron beam with $I_e = 5\mu A$
- -Delivered with 64 ns bunch spacing avoids overlap in the range of P=0.3-10.0 GeV/c
- -Momentum measured with TOF
- -K⁰_L flux mesured with pair spectrometer

-Side remark: Physics case with polarized targets is under study and feasible

Rate of neutrons and K⁰_L on GlueX target

FIG. 2. Comparison of the neutron and K_2^0 fluxes at the hydrogen bubble chamber for 2° production with 16-GeV electrons.

• With a proton beam ratio $n/K_L = 10^3 - 10^4$

ProjectX (Fermi Lab) arXiv:1306.5009

Table III-2: Comparison of the K_L production yield. The BNL AGS kaon and neutron yields are taken from RSVP reviews in 2004 and 2005. The *Project X* yields are for a thick target, fully simulated with LAQGSM/MARS15 into the KOPIO beam solid angle and momentum acceptance.

K⁰_L beam

- Electron beam $E_e = 12 GeV; I_e = 5\mu A$
- Radiator (rad. length)
- Be target (R=3cm)
- LH2 target(L=30cm)
- Distance Be-LH2
- K_L Rate/sec

$$10\%$$
$$L = 40cm$$
$$R = 3cm$$
$$24m$$
$$\sim 10^4$$

K_L Momentum Resolution

Time-of-Flight, L=24m; $\Delta t = 250 ps$

Not everything could be measured with electron and photon beams

What can be done with kaon beams ?

Lattice QCD calculations

Lattice QCD calculations

Thick borders: Hybrid states

Low Lying states

Edwards, Mathur, Richards and Wallace Phys. Rev. D 87, 054506 (2013)

|4

Status of $\ \Omega^{-*}$

Expected Cross Sections vs Bubble Chamber Data

More details in KL2016 Workshop Proceedings

arXiv: 1604.02141

World Data on Ξ

How Important are Missing Hyperons for the Evolution of an Early Universe at Freeze-out

Chemical potential

YSTAR2016 Proceedings arXiv: 1701.07346

 $K - \pi$ Scattering

Current status

KLF Projected for 100 days

Summary

- -KL Facility is feasable at JLAB with intensity ~10⁴/s
- -It has a potential to observe dozens of missing hyperons
- -Significant improvement in K-pi scattering database

Looking forward to learn more during this workshop!