Kaon and light-meson resonances at COMPASS

Boris Grube

Institute for Hadronic Structure and Fundamental Symmetries Technische Universität München Garching, Germany

Pion-Kaon Interactions Workshop JLab, 14. Feb 2018

[Courtesy K. Götzen, GSI]

"Light-meson frontier"

- Many states need confirmation in mass region m ≥ 2 GeV/c²
- Many wide states ⇒ overlap and mixing
- Identification of higher excitations becomes exceedingly difficult

[Courtesy K. Götzen, GSI]

"Light-meson frontier"

- Many states need confirmation in mass region m ≥ 2 GeV/c²
- Many wide states ⇒ overlap and mixing
- Identification of higher excitations becomes exceedingly difficult

[Courtesy K. Götzen, GSI]

"Light-meson frontier"

- Many states need confirmation in mass region *m* ≥ 2 GeV/*c*²
- Many wide states ⇒ overlap and mixing
- Identification of higher excitations becomes exceedingly difficult

[Courtesy K. Götzen, GSI]

"Light-meson frontier"

- Many states need confirmation in mass region m ≥ 2 GeV/c²
- Many wide states ⇒ overlap and mixing
- Identification of higher excitations becomes exceedingly difficult

Light-Meson Spectrum from Lattice QCD

State-of-the-art calculation with $m_{\pi} = 391 \,\mathrm{MeV}/c^2$

Dudek et al., PRD 88 (2013) 094505

- Essentially recovers quark-model pattern
- High towers of excited states
- Additional hybrid-meson super-multiplet

PDG 2016: 25 kaon states below $3.1 \,\text{GeV}/c^2$

- Only 12 kaon states in summary table, 13 need confirmation
- Many predicted quark-model states still missing
- Some hints for supernumerous states

Many kaon states need confirmation

- Little progress in the past
 - Most PDG entries more than 30 years old
 - Since 1990 only 4 kaon states added to PDG (only 1 to summary table)

Kaon spectrum crucial to understand light-meson spectrum

- Identify supernumerous states by completing SU(3)_{flavor} multiplets
 - E.g. $J^P = 0^+$ multiplet with $a_0(980)$, $K_0^*(800)$ [or κ], $f_0(500)$ [or σ], and $f_0(980)$ is hypothesized to be tetra-quark multiplet
 - $K_0^*(800)$ still listed as "needs confirmation" by PDG

Kaon spectrum required to analyse heavy-meson decays

- E.g. search for *CP* violation in multi-body decays e.g. $B^{\pm} \rightarrow D^0 K^{\pm}$ with $D^0 \rightarrow K_S^0 \pi^+ \pi^-$
 - Dalitz-plot amplitude analysis requires accurate knowledge of resonances in $K_S^0 \pi^{\pm}$ (and $\pi^+ \pi^-$) subsystems

Many kaon states need confirmation

- Little progress in the past
 - Most PDG entries more than 30 years old
 - Since 1990 only 4 kaon states added to PDG (only 1 to summary table)

Kaon spectrum crucial to understand light-meson spectrum

- Identify supernumerous states by completing SU(3)_{flavor} multiplets
 - E.g. $J^P = 0^+$ multiplet with $a_0(980)$, $K_0^*(800)$ [or κ], $f_0(500)$ [or σ], and $f_0(980)$ is hypothesized to be tetra-quark multiplet
 - $K_0^*(800)$ still listed as "needs confirmation" by PDG

Kaon spectrum required to analyse heavy-meson decays

- E.g. search for *CP* violation in multi-body decays e.g. $B^{\pm} \rightarrow D^0 K^{\pm}$ with $D^0 \rightarrow K_S^0 \pi^+ \pi^-$
 - Dalitz-plot amplitude analysis requires accurate knowledge of resonances in $K_S^0 \pi^{\pm}$ (and $\pi^+ \pi^-$) subsystems

Many kaon states need confirmation

- Little progress in the past
 - Most PDG entries more than 30 years old
 - Since 1990 only 4 kaon states added to PDG (only 1 to summary table)

Kaon spectrum crucial to understand light-meson spectrum

- Identify supernumerous states by completing SU(3)_{flavor} multiplets
 - E.g. $J^P = 0^+$ multiplet with $a_0(980)$, $K_0^*(800)$ [or κ], $f_0(500)$ [or σ], and $f_0(980)$ is hypothesized to be tetra-quark multiplet
 - $K_0^*(800)$ still listed as "needs confirmation" by PDG

Kaon spectrum required to analyse heavy-meson decays

- E.g. search for *CP* violation in multi-body decays e.g. $B^{\pm} \rightarrow D^0 K^{\pm}$ with $D^0 \rightarrow K_S^0 \pi^+ \pi^-$
 - Dalitz-plot amplitude analysis requires accurate knowledge of resonances in $K_S^0 \pi^{\pm}$ (and $\pi^+ \pi^-$) subsystems

How to produce excited kaon states?

Decays

- *τ* leptons, charmed mesons, and charmonium states ⇒ limited mass reach
- *B* meson decays ⇒ description of large Dalitz plots difficult

Production experiments

- E.g. diffractive production using high-energy kaon beam on stationary target
 - Large cross section
 - All kaon states can appear as intermediate state X

How to produce excited kaon states?

Decays

- *τ* leptons, charmed mesons, and charmonium states ⇒ limited mass reach
- *B* meson decays ⇒ description of large Dalitz plots difficult

Production experiments

- E.g. diffractive production using high-energy kaon beam on stationary target
 - Large cross section
 - All kaon states can appear as intermediate state X

The COMPASS Experiment at the CERN SPS

Experimental Setup

C. Adolph, NIMA 779 (2015) 69

Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

SM2 E/HCAL1 RICH

E/HCAL2

RPD + Target

Beam

SN

The COMPASS Experiment at the CERN SPS

Experimental Setup

C. Adolph, NIMA 779 (2015) 69

Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

RPD + Target

Beam

RICH Hadron spectroscopy

2008, 2009

• 190 GeV/*c* secondary hadron beam

E/HCAL1

E/HCAL2

• h^- beam: 97 % π^- , 2 % K^- , 1 % \bar{p}

• *l*H₂ target

• Diffractive production of excited kaon states X^- that decay into $K^-\pi^+\pi^-$

• Beam-particle ID via Cherenkov detectors (CEDARs)

• Ca. 50× more π^- than K^- in beam

• Final-state PID via RICH detector

• Distinguish K^- from π^- over wide momentum range

• Diffractive production of excited kaon states X^- that decay into $K^-\pi^+\pi^-$

• Beam-particle ID via Cherenkov detectors (CEDARs)

• Ca. 50× more π^- than K^- in beam

• Final-state PID via RICH detector

• Distinguish K^- from π^- over wide momentum range

- Diffractive production of excited kaon states X^- that decay into $K^-\pi^+\pi^-$
- Beam-particle ID via Cherenkov detectors (CEDARs)
 - Ca. 50× more π^- than K^- in beam
- Final-state PID via RICH detector
 - Distinguish K^- from π^- over wide momentum range

- Diffractive production of excited kaon states X^- that decay into $K^-\pi^+\pi^-$
- Beam-particle ID via Cherenkov detectors (CEDARs)
 - Ca. 50× more π^- than K^- in beam
- Final-state PID via RICH detector
 - Distinguish K^- from π^- over wide momentum range

Example: Analysis of $K^-\pi^+\pi^-$ Final State Data sample

Invariant Mass of $\pi^-\pi^+$ Subsystem

• $m_{\pi^-\pi^+}$ spectrum contains states already known from analysis of diffractively produced $\pi^-\pi^-\pi^+$

Invariant Mass of $K^-\pi^+$ Subsystem

- Clear *K*^{*}(892) and *K*^{*}₂(1430) signals
- Data set slightly larger than that of most precise previous experiment (WA03)

Invariant Mass of $K^-\pi^+\pi^-$ System

- Various potential resonance signals
- Need partial-wave analysis (PWA) to disentangle contributions from various *J*^{*P*} quantum numbers

Invariant Mass of $K^-\pi^+\pi^-$ System

COMPASS $0.07 < t' < 0.7 \, (\text{GeV}/c)^2$

- Various potential resonance signals
- Need partial-wave analysis (PWA) to disentangle contributions from various *J*^{*P*} quantum numbers

- m_X dependence unknown
- Extracted from data by performing PWA fit in narrow m_X bins

- Describe kinematic distribution of partial waves
- Calculated using isobar model and helicity formalism (Wigner *D*-functions)
- Transition amplitudes $T_i(m_X) \Rightarrow$ interesting physics
 - m_X dependence unknown
 - Extracted from data by performing PWA fit in narrow m_X bins

- Describe kinematic distribution of partial waves
- Calculated using isobar model and helicity formalism (Wigner *D*-functions)
- Transition amplitudes $T_i(m_X) \Rightarrow$ interesting physics
 - *m_X* dependence unknown
 - Extracted from data by performing PWA fit in narrow m_X bins

Partial-Wave Analysis of $K^-\pi^+\pi^-$ Final State

PWA model similar to WA03

$$\mathcal{I}(\tau; m_X) = \left| \sum_{i}^{\text{waves}} \mathcal{T}_i(m_X) \, \Psi_i(\tau; m_X) \right|^2$$

• 6 isobars

- $\pi^{-}\pi^{+}$ subsystem: $f_0(500)$, $\rho(770)$, and $f_2(1270)$
- $K^-\pi^+$ subsystem: $K_0^*(800)$, $K^*(892)$, and $K_2^*(1430)$
 - $K_0^*(800)$ described by Breit-Wigner amplitude
- 19 waves = combinations of *X*⁻ quantum numbers and decay modes

Results of Partial-Wave Analysis

 $1^+ \rightarrow K^*(892) + \pi^-$ in *S*-wave

• Clear signals from *K*₁(1270) and *K*₁(1400)

Results of Partial-Wave Analysis

Results of Partial-Wave Analysis

Work in progress: improving analysis

- Improved beam PID + data sample from 2009 run \Rightarrow ca. 800 000 $K^-\pi^+\pi^-$ events
 - \Rightarrow world's largest data set (4× WA03)
- Improved PWA model ⇒ clearer resonance signals
- Resonance-model fit ⇒ extraction of K[−]π⁺π[−] resonances and their parameters

Results of Partial-Wave Analysis

Work in progress: improving analysis

- Improved beam PID + data sample from 2009 run
 - \Rightarrow ca. 800 000 $K^-\pi^+\pi^-$ events
 - \Rightarrow world's largest data set (4× WA03)
- Improved PWA model ⇒ clearer resonance signals
- Resonance-model fit \Rightarrow extraction of $K^-\pi^+\pi^-$ resonances and their parameters

Results of Partial-Wave Analysis

Work in progress: improving analysis

- Improved beam PID + data sample from 2009 run
 - \Rightarrow ca. 800 000 $K^-\pi^+\pi^-$ events
 - \Rightarrow world's largest data set (4× WA03)
- Improved PWA model \Rightarrow clearer resonance signals
- Resonance-model fit \Rightarrow extraction of $K^-\pi^+\pi^-$ resonances and their parameters

Results of Partial-Wave Analysis

Further final states accessible by COMPASS

- Isospin partner channel $K^-\pi^0\pi^0$
- $K^-K^+K^-$

•
$$K^{-}\pi^{0}, K^{0}_{S}\pi^{-}, K^{-}\eta^{(\prime)}, K^{-}\omega$$

• . . .

CERN's "Physics beyond Colliders" initiative

- Exploratory study of scientific potential of accelerator complex and scientific infrastructure
- Preparations for the next update to the European Strategy for Particle Physics in 2019/2020
- Unique projects targeting fundamental physics questions
- Complementary to LHC, HL-LHC, and other future colliders
- Kick-off workshop Sep 2016, follow-up workshop Nov 2017
- Working groups set up

- "QCD physics" and "Conventional beams" working groups
- *Proposed project:* RF-separated beams for hadron structure and spectroscopy
 - Drell-Yann with anti-protons
 - Kaon spectroscopy with kaon beams

CERN's "Physics beyond Colliders" initiative

- Exploratory study of scientific potential of accelerator complex and scientific infrastructure
- Preparations for the next update to the European Strategy for Particle Physics in 2019/2020
- Unique projects targeting fundamental physics questions
- Complementary to LHC, HL-LHC, and other future colliders
- Kick-off workshop Sep 2016, follow-up workshop Nov 2017
- Working groups set up

- "QCD physics" and "Conventional beams" working groups
- *Proposed project:* RF-separated beams for hadron structure and spectroscopy
 - Drell-Yann with anti-protons
 - Kaon spectroscopy with kaon beams

CERN's "Physics beyond Colliders" initiative

- Exploratory study of scientific potential of accelerator complex and scientific infrastructure
- Preparations for the next update to the European Strategy for Particle Physics in 2019/2020
- Unique projects targeting fundamental physics questions
- Complementary to LHC, HL-LHC, and other future colliders
- Kick-off workshop Sep 2016, follow-up workshop Nov 2017
- Working groups set up

- "QCD physics" and "Conventional beams" working groups
- *Proposed project:* RF-separated beams for hadron structure and spectroscopy
 - Drell-Yann with anti-protons
 - Kaon spectroscopy with kaon beams

CERN's "Physics beyond Colliders" initiative

- Exploratory study of scientific potential of accelerator complex and scientific infrastructure
- Preparations for the next update to the European Strategy for Particle Physics in 2019/2020
- Unique projects targeting fundamental physics questions
- Complementary to LHC, HL-LHC, and other future colliders
- Kick-off workshop Sep 2016, follow-up workshop Nov 2017
- Working groups set up

- "QCD physics" and "Conventional beams" working groups
- *Proposed project:* RF-separated beams for hadron structure and spectroscopy
 - Drell-Yann with anti-protons
 - Kaon spectroscopy with kaon beams

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

COMPASS, PRD 95 (2017) 032004

• $50 \times 10^6 \pi^- \pi^- \pi^+$ events \Rightarrow approx. $10 \times$ world data

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

COMPASS, PRD 95 (2017) 032004

• $50 \times 10^6 \ \pi^- \pi^- \pi^+$ events \Rightarrow approx. $10 \times$ world data

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

COMPASS, PRD 95 (2017) 032004

• $50 \times 10^6 \pi^- \pi^- \pi^+$ events \Rightarrow approx. $10 \times$ world data

Boris Grube, TU München Kaon and light-meson resonances at COMPASS

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

25 $1^{++}0^{+}f_{0}(980) \pi P$ Intensity / (20 MeV/ c^2) $0.1 < t' < 1.0 (\text{GeV}/c)^2$ (1) Model curve 20 (2) $a_1(1420)$ resonance Improved sensitivity for small (3) Non-resonant term signals 15 • E.g. surprising find: (2)resonance-like $a_1(1420)$ 10 signal in peculiar decay mode (1)• Only 0.3% of total intensity 3

COMPASS, PRL 115 (2015) 082001

1.8

2 $m_{2\pi}$ [GeV/ c^2]

2.2

.2

1.4

1.6

 $\times 10^3$

Why do we need even larger data sets? *Example:* $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

PWA in narrow bins of four-momentum transfer squared t'

- Resolve t' dependence of partial-wave amplitudes
- Improved separation between resonant and nonresonant components in resonance-model fits
- First extraction of t' spectra of resonances from such an analysis \Rightarrow can study production mechanism(s)

Why do we need even larger data sets? Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

PWA in narrow bins of four-momentum transfer squared t'

- Resolve *t*[′] dependence of partial-wave amplitudes
- Improved separation between resonant and nonresonant components in resonance-model fits
- First extraction of t' spectra of resonances from such an analysis ⇒ can study production mechanism(s)

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

- E.g. amplitude of π⁻π⁺ subsystem with J^{PC} = 0⁺⁺
 - $\Rightarrow f_0(500)$ (?), $f_0(980)$, $f_0(1500)$

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

Current parameters of h^- beam

- Composition: 97 % π^- , 2 % K^- , 1 % \bar{p}
- $\bullet\,$ Intensity: $5\times 10^6\,s^{-1}$ for approximately 10 s every 45 s
 - Intensity of kaon component: $10^5 \, {
 m s}^{-1}$
- Main limiting factor: low kaon fraction in beam
- Need to increase intensity of kaons by at least factor 10

Possible solution

RF-separated beam at SPS M2 beam line

Current parameters of h^- beam

- Composition: 97 % π^- , 2 % K^- , 1 % \bar{p}
- $\bullet~$ Intensity: $5\times 10^6\,s^{-1}$ for approximately 10 s every 45 s
 - Intensity of kaon component: $10^5 \, {
 m s}^{-1}$
- Main limiting factor: low kaon fraction in beam
- Need to increase intensity of kaons by at least factor 10

Possible solution

RF-separated beam at SPS M2 beam line

Current parameters of h^- beam

- Composition: 97 % π^- , 2 % K^- , 1 % \bar{p}
- $\bullet\,$ Intensity: $5\times 10^6\,s^{-1}$ for approximately 10 s every 45 s
 - Intensity of kaon component: $10^5 \, {
 m s}^{-1}$
- Main limiting factor: low kaon fraction in beam
- Need to increase intensity of kaons by at least factor 10

Possible solution

RF-separated beam at SPS M2 beam line

RF-separated Kaon Beam

Possible beam parameters

- Lower beam momentum $\leq 100 \, \text{GeV}/c$
 - Not an issue: diffractive production depends only weakly on energy
- Estimated kaon intensity: $3.7 \times 10^6 \, \mathrm{s}^{-1}$
 - More than factor 35 increase w.r.t. conventional beam line
 - Would correspond to 10 to 20 × 10⁶ K[−]π⁺π[−] events assuming same acceptance as current experimental setup ⇒ would be ≈ 10× world data
- More detailed studies needed to determine beam parameters more precisely
- Requires major investment

RF-separated Kaon Beam

Possible beam parameters

- Lower beam momentum $\lesssim 100 \,\mathrm{GeV}/c$
 - Not an issue: diffractive production depends only weakly on energy
- Estimated kaon intensity: $3.7 \times 10^6 \, \text{s}^{-1}$
 - More than factor 35 increase w.r.t. conventional beam line
 - Would correspond to 10 to 20 × 10⁶ K[−]π⁺π[−] events assuming same acceptance as current experimental setup
 ⇒ would be ≈ 10× world data
- More detailed studies needed to determine beam parameters more precisely
- Requires major investment

RF-separated Kaon Beam

Possible beam parameters

- Lower beam momentum $\leq 100 \,\mathrm{GeV}/c$
 - Not an issue: diffractive production depends only weakly on energy
- Estimated kaon intensity: $3.7 \times 10^6 \, \text{s}^{-1}$
 - More than factor 35 increase w.r.t. conventional beam line
 - Would correspond to 10 to 20 × 10⁶ K[−]π⁺π[−] events assuming same acceptance as current experimental setup ⇒ would be ≈ 10× world data
- More detailed studies needed to determine beam parameters more precisely
- Requires major investment

Requirements for experimental Setup

- Upgrade of beam PID ⇒ improve rate capability and thermal stability of CEDARs
- High-resolution silicon beam telescope and vertex detector
- Improve detection of target recoil particle
 - Ensures exclusivity of measured events
- Improve PID of final-state particles
- Efficient detection of photons over broad kinematic range

• Provides access to interesting final states: $K^-\pi^0\pi^0$, $K^-\omega$, $K^-\eta^{(\prime)}$, ...

Work in progress

• Detailed studies of experimental setup will start when beam parameters are fixed

Requirements for experimental Setup

- Upgrade of beam PID ⇒ improve rate capability and thermal stability of CEDARs
- High-resolution silicon beam telescope and vertex detector
- Improve detection of target recoil particle
 - Ensures exclusivity of measured events
- Improve PID of final-state particles
- Efficient detection of photons over broad kinematic range
 - Provides access to interesting final states: $K^-\pi^0\pi^0$, $K^-\omega$, $K^-\eta^{(\prime)}$, ...

Work in progress

• Detailed studies of experimental setup will start when beam parameters are fixed

Requirements for experimental Setup

- Upgrade of beam PID ⇒ improve rate capability and thermal stability of CEDARs
- High-resolution silicon beam telescope and vertex detector
- Improve detection of target recoil particle
 - Ensures exclusivity of measured events
- Improve PID of final-state particles
- Efficient detection of photons over broad kinematic range
 - Provides access to interesting final states: $K^-\pi^0\pi^0$, $K^-\omega$, $K^-\eta^{(\prime)}$, ...

Work in progress

• Detailed studies of experimental setup will start when beam parameters are fixed

Conclusions

Kaon spectroscopy

- Many kaon states require further confirmation or more precise measurement of their paramaters
- COMPASS has already acquired the world's largest data sample for $K^- + p \rightarrow K^- \pi^+ \pi^- + p_{\text{recoil}}$ (800 000 events)

Possible future program

- *Goal:* collect 10 to $20 \times 10^6 K^- \pi^+ \pi^-$ events using high-intensity RF-separated kaon beam
 - Would exceed any existing data sample by at least factor 10
 - *High physics potential:* rewrite PDG for kaon states above $1.5 \text{ GeV}/c^2$ (like LASS and WA03 did 30 year ago)
 - Precision study of $K\pi$ *S*-wave
- Requires experimental setup with uniform acceptance over wide kinematic range (including PID and calorimeters)

Conclusions

Kaon spectroscopy

- Many kaon states require further confirmation or more precise measurement of their paramaters
- COMPASS has already acquired the world's largest data sample for $K^- + p \rightarrow K^- \pi^+ \pi^- + p_{\text{recoil}}$ (800 000 events)

Possible future program

- *Goal:* collect 10 to $20 \times 10^6 K^- \pi^+ \pi^-$ events using high-intensity RF-separated kaon beam
 - Would exceed any existing data sample by at least factor 10
 - *High physics potential:* rewrite PDG for kaon states above $1.5 \text{ GeV}/c^2$ (like LASS and WA03 did 30 year ago)
 - Precision study of $K\pi$ *S*-wave
- Requires experimental setup with uniform acceptance over wide kinematic range (including PID and calorimeters)