THREE-BODY INTERACTION IN

 ISOBAR FORMALISM

Maxim Mai
The George Washington University

INTRODUCTION

QCD at low energies
\rightarrow mass generation \& confinement

QCD at low energies
Non-perturbative dynamics
\rightarrow mass generation \& confinement
\rightarrow rich spectrum of excited states

QCD at low energies
Non-perturbative dynamics
\rightarrow mass generation \& confinement
\rightarrow rich spectrum of excited states

Q1: how many are there?
\rightarrow missing resonance problem
Q2: what are they?

- quark-antiquark
- gluons
- hadron-hardon dynamics

QCD at low energies
Non-perturbative dynamics
\rightarrow mass generation \& confinement
\rightarrow rich spectrum of excited states

Q1: how many are there?

\rightarrow missing resonance problem
Q2: what are they?

- quark-antiquark
- gluons
- hadron-hardon dynamics

EXAMPLES:

- f0(500), $\varrho(770), \kappa(800) \ldots$
couple dominantly to $2 \pi, K \pi, \ldots \ldots$ taik by Jose r. Pelaez

QCD at low energies
Non-perturbative dynamics
\rightarrow mass generation \& confinement
\rightarrow rich spectrum of excited states

Q1: how many are there?

\rightarrow missing resonance problem
Q2: what are they?

- quark-antiquark
- gluons
- hadron-hardon dynamics

EXAMPLES:

- f0(500), $\varrho(770), \kappa(800) \ldots$
couple dominantly to $2 \pi, K \pi, \ldots \ldots$ taik by Jose r. Pelaez
-al(1260), K1(1400)
couple dominantly to $3 \pi, K \pi \pi, \ldots$

Experiment

- Search for QCD exotics @ GlueX
* a1(1260)

- KL Beam @ GlueX
* $K^{*}(892)$ signature in $K N \rightarrow K \pi N$
* K $\pi \pi$ channels(?)
- Further applications:
* Roper puzzle ($\pi \pi N$)
* X(3872)

Experiment

- Search for QCD exotics @ GlueX
* a1(1260)

- KL Beam @ GlueX
* $K^{*}(892)$ signature in $K N \rightarrow K \pi N$
* K $\pi \pi$ channels(?)
- Further applications:
* Roper puzzle ($\pi \pi N$)
* X(3872)

Lattice QCD

Ab-initio numerical calculations

- Euclidean ST
- finite lattice spacing
- finite volume effects
\rightarrow 2-body Quantization Condition
[Lüscher (1986)]
\rightarrow talk by Morningstar
\rightarrow 3-body QC not yet established
[Rusetsky, Polejaeva, Sharpe, Hansen, Briceno, Davoudi, Guo MM, Doring, . . .]

Experiment

- Search for QCD exotics @ GlueX
* a1(1260)

- KL Beam @ GlueX
* $K^{*}(892)$ signature in $K N \rightarrow K \pi N$
* K $\pi \pi$ channels(?)
- Further applications:
* Roper puzzle ($\pi \pi N$)
* X(3872)

Lattice QCD

Ab-initio numerical calculations

- Euclidean ST
- finite lattice spacing
- finite volume effects
\rightarrow 2-body Quantization Condition
[Lüscher (1986)]
\rightarrow talk by Morningstar
\rightarrow 3-body QC not yet established
[Rusetsky, Polejaeva, Sharpe, Hansen, Briceno, Davoudi, Guo MM, Doring, . . .]

THIS TALK: 3-BODY SCATTERING AMPLITUDE IN ISOBAR-FORMULATION

UNITARITY OF S-MATRIX

POWER LAW FIN. VOL. EFFECTS

3 $\boldsymbol{\rightarrow} \mathbf{3}$ SCATTERING AMPLITUDE IN INFINITE VOLUME

T-MATRIX

- $\mathbf{3}$ asymptotic states (scalar particles of equal mass (\boldsymbol{m}))

T-MATRIX

- 3 asymptotic states (scalar particles of equal mass (m))
- Connectedness structure of matrix elements: (all permutations considered)

T-MATRIX

- 3 asymptotic states (scalar particles of equal mass (m))
- Connectedness structure of matrix elements: (all permutations considered)

- isobar-parametrization of two-body amplitude
[Bedaque, Griesshammer (1999)]
\rightarrow "isobars" $\boldsymbol{S}\left(\boldsymbol{M}_{i n v}\right)$ for definite QN \& correct r.h.-singularities

T-MATRIX

- 3 asymptotic states (scalar particles of equal mass (m))
- Connectedness structure of matrix elements: (all permutations considered)

- isobar-parametrization of two-body amplitude
[Bedaque, Griesshammer (1999)]
\rightarrow "isobars" $\boldsymbol{S}\left(\boldsymbol{M}_{i n v}\right)$ for definite QN \& correct r.h.-singularities

T-MATRIX

- 3 asymptotic states (scalar particles of equal mass (m))
- Connectedness structure of matrix elements: (all permutations considered)

- isobar-parametrization of two-body amplitude
\rightarrow "isobars" $\boldsymbol{S}\left(\boldsymbol{M}_{i n v}\right)$ for definite QN \& correct r.h.-singularities
\rightarrow coupling to asymptotic states: cut-free-function $v(q, p)$

T-MATRIX

- 3 asymptotic states (scalar particles of equal mass (m))
- Connectedness structure of matrix elements: (all permutations considered)

- isobar-parametrization of two-body amplitude by
[Bedaque, Griesshammer (1999)]
\rightarrow "isobars" $\sim S\left(M_{i n v}\right)$ for definite QN \& correct r.h.-singularities
\rightarrow coupling to asymptotic states: cut-free-function $\boldsymbol{v}(\boldsymbol{q}, \boldsymbol{p})$
- Connected part: due to isobar-spectator interaction $\rightarrow T\left(q_{i n} q_{\text {out }} ; s\right)$

T-MATRIX

- 3 asymptotic states (scalar particles of equal mass (m))
- Connectedness structure of matrix elements: (all permutations considered)

- isobar-parametrization of two-body amplitude by
[Bedaque, Griesshammer (1999)]
\rightarrow "isobars" $\sim S\left(M_{i n v}\right)$ for definite QN \& correct r.h.-singularities
\rightarrow coupling to asymptotic states: cut-free-function $v(q, p)$
- Connected part: due to isobar-spectator interaction $\rightarrow \boldsymbol{T}\left(\boldsymbol{q}_{i n}, q_{o u t} ; s\right)$
$\rightarrow 8$ kinematic variables

UNITARITY

3-body Unitarity (normalization condition \leftrightarrow phase space integral)

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

UNITARITY

3-body Unitarity (normalization condition \leftrightarrow phase space integral)

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

UNITARITY

3-body Unitarity (normalization condition \leftrightarrow phase space integral)

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

UNITARITY

3-body Unitarity (normalization condition \leftrightarrow phase space integral)

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle \mid
$$

UNITARITY

3-body Unitarity (normalization condition \leftrightarrow phase space integral)

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle \mid
$$

General Ansatz for the isobar-spectator interaction $\rightarrow \mathbf{B} \& \tau$ are unknown!!!

UNITARITY

3-body Unitarity (normalization condition \leftrightarrow phase space integral)

$$
\left\langle\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right) \mid p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

General Ansatz for the isobar-spectator interaction $\rightarrow \mathbf{B} \& \tau$ are unknown!!!

UNITARITY

3-body Unitarity (normalization condition \leftrightarrow phase space integral)

INTEGRAL EQUATION

$3 \rightarrow \mathbf{3}$ scattering amplitude as a 3-dimensional integral equation

INTEGRAL EQUATION

$3 \rightarrow 3$ scattering amplitude as a 3-dimensional integral equation

Unitarity/matching

$\operatorname{Disc} B(u)=2 \pi i \frac{\delta\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}\right)}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}} v^{2}$

INTEGRAL EQUATION

$3 \rightarrow 3$ scattering amplitude as a 3-dimensional integral equation

Unitarity/matching

Dispersion relation

$\operatorname{Disc} B(u)=2 \pi i \frac{\delta\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}\right)}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}} v^{2} \geq \quad\langle q| B(s)|p\rangle=\frac{v(Q, q) v(Q, p)}{m^{2}-Q^{2}-i \epsilon}$

INTEGRAL EQUATION

$3 \rightarrow 3$ scattering amplitude as a 3-dimensional integral equation

Unitarity/matching

Disc $B(u)=2 \pi i \frac{\delta\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}\right)}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}} v^{2}$

Dispersion relation

INTEGRAL EQUATION

$3 \rightarrow 3$ scattering amplitude as a 3-dimensional integral equation

Unitarity/matching

$\operatorname{Disc} B(u)=2 \pi i \frac{\delta\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}\right)}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}} v^{2}$

Dispersion relation

INTEGRAL EQUATION

$3 \rightarrow 3$ scattering amplitude as a 3-dimensional integral equation

Unitarity/matching

$\operatorname{Disc} B(u)=2 \pi i \frac{\delta\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}\right)}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}} v^{2}$
$\operatorname{Disc} \frac{1}{S(\sigma(k))}=\frac{-i}{64 \pi^{2} K_{\mathrm{cm}}} \int \mathrm{d}^{3} \overline{\mathbf{K}} \frac{\delta\left(|\overline{\mathbf{K}}|-K_{\mathrm{cm}}\right)}{\sqrt{(\overline{\mathbf{K}})^{2}+m^{2}}} v^{2}$

INTEGRAL EQUATION

$3 \rightarrow 3$ scattering amplitude as a 3-dimensional integral equation

Unitarity/matching

$\operatorname{Disc} B(u)=2 \pi i \frac{\delta\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}\right)}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}} v^{2}$

INTEGRAL EQUATION

$3 \rightarrow 3$ scattering amplitude as a 3-dimensional integral equation

Unitarity/matching

Disc $B(u)=2 \pi i \frac{\delta\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}\right)}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}} v^{2}$

Disc $\frac{1}{S(\sigma(k))}=\frac{-i}{64 \pi^{2} K_{\mathrm{cm}}} \int \mathrm{d}^{3} \overline{\mathbf{K}} \frac{\delta\left(|\overline{\mathbf{K}}|-K_{\mathrm{cm}}\right)}{\sqrt{(\overline{\mathbf{K}})^{2}+m^{2}}} v^{2}$

Dispersion relation

$$
\overline{=}+\infty
$$

THE ONLY IMAGINARY PARTS REQUIRED BY 3b UNITARITY

UNITARITY OF S-MATRIX

LATTICE QCD SETUP

Lattice QCD calculations are performed in finite volume

LATTICE QCD SETUP

Lattice QCD calculations are performed in finite volume

boundary conditions

LATTICE QCD SETUP

Lattice QCD calculations are performed in finite volume

momenta \& spectra are discretized

LATTICE QCD SETUP

Lattice QCD calculations are performed in finite volume

momenta \& spectra are discretized

- LSZ formalism relates Greens fct. \& S-matrix

LATTICE QCD SETUP

Lattice QCD calculations are performed in finite volume

momenta \& spectra are discretized

- LSZ formalism relates Greens fct. \& S-matrix
$\rightarrow \boldsymbol{T}\left(\boldsymbol{E}^{*}\right)=\infty \quad \leftrightarrow \boldsymbol{E}^{*} \in$ Energy-Eigenvalues \qquad

LATTICE QCD SETUP

Lattice QCD calculations are performed in finite volume

momenta \& spectra are discretized

- LSZ formalism relates Greens fct. \& S-matrix
$\rightarrow \boldsymbol{T}\left(\boldsymbol{E}^{*}\right)=\infty \leftrightarrow \boldsymbol{E}^{*} \in$ Energy-Eigenvalues
- well established in 2-body
[Lüscher (1986)]

LATTICE QCD SETUP

Lattice QCD calculations are performed in finite volume

momenta \& spectra are discretized

- LSZ formalism relates Greens fct. \& S-matrix
$\rightarrow \boldsymbol{T}\left(\boldsymbol{E}^{*}\right)=\infty \leftrightarrow \boldsymbol{E}^{*} \in$ Energy-Eigenvalues
- well established in 2-body
[Lüscher (1986)]
- 3-body analog under investigation

Sharpe, Rusetsky, Hansen, Polejaeva, Briceno, Davoudi, Guo, Pang, MM, Doring

DISCRETIZATION

Discretize 3b-scattering amplitude \rightarrow 3b Quantization Condition

DISCRETIZATION

Discretize 3b-scattering amplitude \rightarrow 3b Quantization Condition

- v is cut-free

DISCRETIZATION

Discretize 3b-scattering amplitude \rightarrow 3b Quantization Condition

- v is cut-free

DISCRETIZATION

Discretize 3b-scattering amplitude \rightarrow 3b Quantization Condition

- v is cut-free

- Project to irreps of cubic group $\left\{\mathbf{A}_{1}\left|\mathbf{A}_{2}\right| \mathbf{E}\left|\mathbf{T}_{1}\right| \mathbf{T}_{2}\right\}$ S-wave infinite volume vs. A_{1}^{+}finite volume
- reduce dimensionality
$-B$ (ope potential) is singular!

PROJECTION TO IRREPS

1) Separation of variables

- shells $=$ sets of points related by $\boldsymbol{O}_{\boldsymbol{h}}$
- inf. vol. analog: radii and angles

PROJECTION TO IRREPS

1) Separation of variables

- shells $=$ sets of points related by $\boldsymbol{O}_{\boldsymbol{h}}$
- inf. vol. analog: radii and angles

2) Find the ONB of functions on each shell
$-f^{s}\left(\hat{\mathbf{p}}_{j}\right)=\sqrt{4 \pi} \sum_{\Gamma \alpha} \sum_{u} f_{u}^{\Gamma \alpha s} \chi_{u}^{\Gamma \alpha s}\left(\hat{\mathbf{p}}_{j}\right)$

- inf. vol. analog: PWA
[Döring, Hammer, MM, Pang, Rusetsky, Wu (2018)]

PROJECTION TO IRREPS

1) Separation of variables

- shells $=$ sets of points related by $\boldsymbol{O}_{\boldsymbol{h}}$
- inf. vol. analog: radii and angles

2) Find the ONB of functions on each shell
$-f^{s}\left(\hat{\mathbf{p}}_{j}\right)=\sqrt{4 \pi} \sum_{\Gamma \alpha} \sum_{u} f_{u}^{\Gamma \alpha s} \chi_{u}^{\Gamma \alpha s}\left(\hat{\mathbf{p}}_{j}\right)$

- inf. vol. analog: PWA
[Döring, Hammer, MM, Pang Rusetsky, Wu (2018)]

Projection of 3-body-Quantization-Condition = FINAL RESULT

$$
\operatorname{Det}\left(\mathbf{B}_{\mathbf{u u}^{\prime}}^{\Gamma \mathrm{ss}^{\prime}}\left(\mathbf{W}^{\mathbf{2}}\right)+\frac{2 \mathbf{E}_{\mathbf{s}} \mathbf{L}^{3}}{\vartheta(\mathbf{s})} \tau_{\mathbf{s}}\left(\mathbf{W}^{\mathbf{2}}\right)^{-1} \delta_{\mathbf{s s}^{\prime}} \delta_{\mathbf{u u}^{\prime}}\right)=\mathbf{0}
$$

PROJECTION TO IRREPS

1) Separation of variables

- shells $=$ sets of points related by $\boldsymbol{O}_{\boldsymbol{h}}$
- inf. vol. analog: radii and angles

2) Find the ONB of functions on each shell
$-f^{s}\left(\hat{\mathbf{p}}_{j}\right)=\sqrt{4 \pi} \sum_{\Gamma \alpha} \sum_{u} f_{u}^{\Gamma \alpha s} \chi_{u}^{\Gamma \alpha s}\left(\hat{\mathbf{p}}_{j}\right)$

- inf. vol. analog: PWA
[Döring, Hammer, MM, Pang, Rusetsky, Wu (2018)]

Projection of 3-body-Quantization-Condition = FINAL RESULT

$$
\operatorname{Det}\left(\mathbf{B}_{\mathbf{u u}^{\prime}}^{\Gamma \mathbf{s s}^{\prime}}\left(\mathbf{W}^{\mathbf{2}}\right)+\frac{2 \mathbf{E}_{\mathbf{s}} \mathbf{L}^{3}}{\vartheta(\mathbf{s})} \tau_{\mathbf{s}}\left(\mathbf{W}^{\mathbf{2}}\right)^{-1} \delta_{\mathbf{s s}^{\prime}} \delta_{\mathbf{u u}^{\prime}}\right)=\mathbf{0}
$$

$$
\begin{array}{cc}
\mathrm{W}-\text { total energy } & \vartheta-\text { multiplicity } \\
\mathrm{s} / \mathrm{s}^{\prime}-\text { shell index } & \mathrm{L}-\text { lattice volume } \\
\mathrm{u} / \mathrm{u}^{\prime}-\text { basis index } & \text { Es }-1 \mathrm{p} . \text { energy }
\end{array}
$$

NUMERICAL EXAMPLE

$$
\operatorname{Det}\left(\mathbf{B}_{\mathbf{u u}^{\prime}}^{\Gamma \mathrm{ss}^{\prime}}\left(\mathbf{W}^{2}\right)+\frac{2 \mathbf{E}_{\mathbf{s}} \mathbf{L}^{3}}{\vartheta(\mathbf{s})} \tau_{\mathbf{s}}\left(\mathbf{W}^{2}\right)^{-1} \delta_{\mathrm{ss}^{\prime}} \delta_{\mathbf{u u}^{\prime}}\right)=0
$$

NUMERICAL EXAMPLE

$$
\operatorname{Det}\left(\mathbf{B}_{\mathbf{u u}^{\prime}}^{\Gamma \mathrm{ss}^{\prime}}\left(\mathbf{W}^{\mathbf{2}}\right)+\frac{2 \mathbf{E}_{\mathbf{s}} \mathbf{L}^{3}}{\vartheta(\mathbf{s})} \tau_{\mathbf{s}}\left(\mathbf{W}^{\mathbf{2}}\right)^{-1} \delta_{\mathbf{s s}^{\prime}} \delta_{\mathbf{u u}^{\prime}}\right)=0
$$

- 3 particles in finite volume: $m=138 \mathrm{MeV}, \mathrm{L}=3 \mathrm{fm}$

NUMERICAL EXAMPLE

$$
\operatorname{Det}\left(\mathbf{B}_{\mathbf{u u}} \mathrm{rss}^{\prime}\left(\mathbf{W}^{2}\right)+\frac{2 \mathbf{E}_{\mathbf{s}} \mathbf{L}^{3}}{\vartheta(\mathbf{s})} \tau_{\mathbf{s}}\left(\mathbf{W}^{2}\right)^{-1} \delta_{\mathrm{ss}^{\prime}} \delta_{\mathbf{u u}^{\prime}}\right)=\mathbf{0}
$$

- 3 particles in finite volume: $m=138 \mathrm{MeV}, L=3 \mathrm{fm}$
- one S-wave isobar \rightarrow two unknowns:
- vertex(Isobar $\rightarrow 2$ stable particles)
- subtraction constant (~mass)

NUMERICAL EXAMPLE

$$
\operatorname{Det}\left(\mathbf{B}_{\mathbf{u u}^{\prime}}^{\Gamma \mathrm{ss}^{\prime}}\left(\mathbf{W}^{\mathbf{2}}\right)+\frac{2 \mathrm{E}_{\mathbf{s}} \mathbf{L}^{3}}{\vartheta(\mathbf{s})} \tau_{\mathbf{s}}\left(\mathbf{W}^{\mathbf{2}}\right)^{-1} \delta_{\mathbf{s s}^{\prime}} \delta_{\mathbf{u u}^{\prime}}\right)=0
$$

- 3 particles in finite volume: $m=138 \mathrm{MeV}, \mathrm{L}=3 \mathrm{fm}$
- one S-wave isobar \rightarrow two unknowns:
- vertex(Isobar $\rightarrow 2$ stable particles)
- subtraction constant (~mass)
\square

NUMERICAL EXAMPLE

$$
\operatorname{Det}\left(\mathbf{B}_{\mathbf{u u}^{\prime}}^{\Gamma \mathrm{ss}^{\prime}}\left(\mathbf{W}^{\mathbf{2}}\right)+\frac{2 \mathrm{E}_{\mathbf{s}} \mathbf{L}^{3}}{\vartheta(\mathbf{s})} \tau_{\mathbf{s}}\left(\mathbf{W}^{\mathbf{2}}\right)^{-1} \delta_{\mathbf{s s}^{\prime}} \delta_{\mathbf{u u}^{\prime}}\right)=0
$$

- 3 particles in finite volume: $m=138 \mathrm{MeV}, \mathrm{L}=3 \mathrm{fm}$
- one S-wave isobar \rightarrow two unknowns:
- vertex(Isobar $\rightarrow 2$ stable particles)
- subtraction constant (~mass)
- Project to $\Gamma=A^{1+}$

\rightarrow prediction of 3body energy-eigenlevels

NUMERICAL EXAMPLE

$$
\operatorname{Det}\left(\mathbf{B}_{\mathbf{u u}^{\prime}}^{\Gamma \mathrm{ss}^{\prime}}\left(\mathbf{W}^{\mathbf{2}}\right)+\frac{2 \mathrm{E}_{\mathbf{s}} \mathbf{L}^{3}}{\vartheta(\mathbf{s})} \tau_{\mathbf{s}}\left(\mathbf{W}^{\mathbf{2}}\right)^{-1} \delta_{\mathbf{s s}^{\prime}} \delta_{\mathbf{u u}^{\prime}}\right)=0
$$

- 3 particles in finite volume: $m=138 \mathrm{MeV}, \mathrm{L}=3 \mathrm{fm}$
- one S-wave isobar \rightarrow two unknowns:
- vertex(Isobar $\rightarrow 2$ stable particles)
- subtraction constant (\sim mass)
- Project to $\Gamma=A^{1+}$

\rightarrow prediction of 3body energy-eigenlevels

NUMERICAL EXAMPLE

$$
\operatorname{Det}\left(\mathbf{B}_{\mathbf{u u}^{\prime}}^{\Gamma \mathrm{ss}^{\prime}}\left(\mathbf{W}^{\mathbf{2}}\right)+\frac{2 \mathbf{E}_{\mathbf{s}} \mathbf{L}^{3}}{\vartheta(\mathbf{s})} \tau_{\mathbf{s}}\left(\mathbf{W}^{\mathbf{2}}\right)^{-1} \delta_{\mathbf{s s}^{\prime}} \delta_{\mathbf{u u}^{\prime}}\right)=\mathbf{0}
$$

- 3 particles in finite volume: $m=138 \mathrm{MeV}, \mathrm{L}=3 \mathrm{fm}$
- one S-wave isobar \rightarrow two unknowns:
- vertex(Isobar $\rightarrow 2$ stable particles)
- subtraction constant (\sim mass)
- Project to $\Gamma=A^{1+}$

\rightarrow prediction of 3body energy-eigenlevels

SUMMARY/OUTLOOK

3-body scattering amplitude derived from 2\&3 body Unitarity

- interaction kernel $=$ one-particle-exchange
- flexible parametrization: real contributions can be added to the kernel

TBD: analysis of physical systems

3-body Quantization Condition in fin. vol. derived

- cancellations of unphysical poles revealed
- projection to irreps done
- technical feasibility on a numerical example
- the only approximation = number of isobars

"power of Unitarity"
TBD: multiple channels
TBD: inclusion of isospin \& angular momentum

THANK YOU!

SPARES

The Power of Unitarity

- Projection of T

$$
\begin{aligned}
T^{s s^{\prime}}\left(\hat{\mathbf{p}}_{j}, \hat{\mathbf{p}}_{j^{\prime}}\right) & =4 \pi \sum_{\Gamma \alpha} \sum_{u u^{\prime}} \chi_{u}^{\Gamma \alpha s}\left(\hat{\mathbf{p}}_{j}\right) T_{u u^{\prime}}^{\Gamma s s^{\prime}} \chi_{u^{\prime}}^{\Gamma \alpha s^{\prime}}\left(\hat{\mathbf{p}}_{j^{\prime}}\right), \\
T_{u u^{\prime}}^{\Gamma s s^{\prime}} & =\frac{4 \pi}{\vartheta(s) \vartheta\left(s^{\prime}\right)} \sum_{j=1}^{\vartheta(s)} \sum_{j^{\prime}=1}^{\vartheta\left(s^{\prime}\right)} \chi_{u}^{\Gamma \alpha s}\left(\hat{\mathbf{p}}_{j}\right) T^{s s^{\prime}}\left(\hat{\mathbf{p}}_{j}, \hat{\mathbf{p}}_{j^{\prime}}\right) \chi_{u^{\prime}}^{\Gamma \alpha s^{\prime}}\left(\hat{\mathbf{p}}_{j^{\prime}}\right)
\end{aligned}
$$

QUANTIZATION CONDITION

Cancellations:

\rightarrow fin. vol. normalization of δ-distribution!

$$
B^{A_{1}^{+}} \text {singular at } W^{+}=E_{m}+E_{n}+E\left(\boldsymbol{q}_{n j}+\boldsymbol{p}_{m i}\right)
$$

$$
\tau_{m}^{-1} \text { singular at } W^{ \pm \pm}=E_{m} \pm E((2 \pi / L) \boldsymbol{y}) \pm E\left((2 \pi / L) \boldsymbol{y}+\boldsymbol{p}_{m i}\right) \text { for } \boldsymbol{y} \in \mathbb{Z}^{3}
$$

- when isobar-momenta are discretized in the 3-body cms momenta

$$
\tau=\sigma(k)-M_{0}^{2}-\frac{1}{(2 \pi)^{3}} \int d^{3} \ell \frac{\lambda^{2}}{2 E_{\ell}\left(\sigma(k)-4 E_{\ell}^{2}+i \epsilon\right)}
$$

Power-law finite-volume effects dictated by three-body unitarity

S-wave infinite volume vs. A_{1}^{+}finite volume

Tower of boosted $2 \rightarrow 2$ amplitudes to implement 3-body quantization condition

SCATTERING AMPLITUDE

$3 \rightarrow 3$ scattering amplitude is a 3 -dimensional integral equation

- Imaginary parts of $\boldsymbol{B}, \boldsymbol{S}$ are fixed by unitarity/matching
- For simplicity $\boldsymbol{v}=\boldsymbol{\lambda} \quad$ (full relations available)

$$
\operatorname{Disc} B(u)=2 \pi i \lambda^{2} \frac{\delta\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}\right)}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}}
$$

- un-subtracted dispersion relation

$$
\langle q| B(s)|p\rangle=-\frac{\lambda^{2}}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}+i \epsilon\right)}
$$

- one- π exchange in TOPT \rightarrow RESULT !

Unitarity \& Matching

- 3-body Unitarity (normalization condition \leftrightarrow phase space integral)

