Kaon-pion scattering from lattice QCD

Colin Morningstar
Carnegie Mellon University

Pion-Kaon Interactions Workshop JLab, Newport News, VA

February 14, 2018

Overview

- q.m. resonance in a box
- two-particle Luscher formalism
- resonance information from finite-volume energies
- two-particle energies in lattice QCD
- use of the K-matrix and the box B matrix
- recent results

Collaborators

- people involved in this work:

Ruairí Brett
CMU

Daniel Darvish
CMU

Jake Fallica U. Kentucky, Lexington

Christian Walther Andersen U. of S. Denmark

- thanks to NSF XSEDE:
- Stampede at TACC
- Comet at SDSC

Resonances in a box: an example

- consider a simple quantum mechanical example
- Hamiltonian

$$
H=\frac{1}{2} \boldsymbol{p}^{2}+V(r), \quad V(r)=\left(-4+\frac{1}{16} r^{4}\right) e^{-r^{2} / 8}
$$

Spectrum of example Hamiltonian

- spectrum for $E<4$ and $l=0,1,2,3,4,5$ of example system

Scattering phase shifts

- scattering phase shifts for various partial waves

More scattering phase shifts

- scattering phase shifts for higher partial waves

Spectrum in box: $A_{1 g}$ channel

- spectrum discrete in box, periodic b.c., momenta quantized
- stationary-state energies in $A_{1 g}$ channel shown below
- narrow resonance is avoided level crossing, broad resonances?

Spectrum in box: $T_{1 u}$ channel

- stationary-state energies in $T_{1 u}$ channel shown below

Scattering phase shifts in lattice QCD timeline

- DeWitt 1956: finite-volume energies related to scattering phase shifts
- Lüscher 1986: fields in a cubic box
- Rummukainen and Gottlieb 1995: nonzero total momenta
- Kim, Sachrajda, and Sharpe 2005: derivation reworked
- explosion of papers since then
- Briceno 2014: generalized to arbitrary spin, multiple channels

Two-particle correlator in finite-volume

- correlator of two-particle operator σ in finite volume

$$
\begin{aligned}
\boldsymbol{C}^{L}(\boldsymbol{P})= & \sigma \\
& \left.+\sigma \sigma^{\dagger}+\sigma\right) \\
(\sigma) & \sigma^{\dagger} \\
& \left(\sigma^{\dagger}+\ldots\right.
\end{aligned}
$$

- Bethe-Salpeter kernel

$$
\begin{aligned}
& +\bar{\square}+) \cdot(
\end{aligned}
$$

- $C^{\infty}(P)$ has branch cuts where two-particle thresholds begin
- momentum quantization in finite volume: cuts \rightarrow series of poles
- C^{L} poles: two-particle energy spectrum of finite volume theory

Corrections from finite momentum sums

- finite-volume momentum sum is infinite-volume integral plus correction \mathcal{F}

- define the following quantities: A, A^{\prime}, invariant scattering amplitude $i \mathcal{M}$

$$
\begin{aligned}
& \begin{aligned}
(A)= & (\sigma) \\
& +\sigma \text { (O) }
\end{aligned} \\
& -\left(A^{\prime}\right)=-\left(\sigma^{+}+-\left(\sigma^{+}\right)\right. \\
& + \text {(iK) }{ }^{+}+\ldots \\
& -(i M)=-i K+i K \\
& +i K
\end{aligned}
$$

Quantization condition

- subtracted correlator $C_{\text {sub }}(P)=C^{L}(P)-C^{\infty}(P)$ given by

$$
\begin{aligned}
C_{\mathrm{sub}}(P) & =(A)(A)+A(A \mathcal{A} \\
& +(A)(i \mathcal{M} \\
A \mathcal{F} & \left(A^{\prime}\right)+\ldots
\end{aligned}
$$

- sum geometric series

$$
C_{\text {sub }}(P)=A \mathcal{F}(1-i \mathcal{M} \mathcal{F})^{-1} A^{\prime} .
$$

- poles of $C_{\text {sub }}(P)$ are poles of $C^{L}(P)$ from $\operatorname{det}(1-i \mathcal{M} \mathcal{F})=0$
- key tool: for $g_{c}(\boldsymbol{p})$ spatially contained and regular

$$
\begin{gathered}
\frac{1}{L^{3}} \sum_{p} g_{c}(\boldsymbol{p})=\int \frac{d^{3} k}{(2 \pi)^{3}} g_{c}(\mathbf{k})+O\left(e^{-m L}\right) \\
\frac{1}{L^{3}} \sum_{p} \frac{g_{c}\left(\boldsymbol{p}^{2}\right)}{\left(\boldsymbol{p}^{2}-a^{2}\right)}=\frac{1}{L^{3}} \sum_{p} \frac{g_{c}\left(a^{2}\right)}{\left(\boldsymbol{p}^{2}-a^{2}\right)}+\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{g_{c}\left(\boldsymbol{p}^{2}\right)-g\left(a^{2}\right)}{\left(\boldsymbol{p}^{2}-a^{2}\right)}+O\left(e^{-m L}\right)
\end{gathered}
$$

Kinematics

- work in spatial L^{3} volume with periodic b.c.
- total momentum $\boldsymbol{P}=(2 \pi / L) \boldsymbol{d}$, where \boldsymbol{d} vector of integers
- calculate lab-frame energy E of two-particle interacting state in lattice QCD
- boost to center-of-mass frame by defining:

$$
E_{\mathrm{cm}}=\sqrt{E^{2}-\boldsymbol{P}^{2}}, \quad \gamma=\frac{E}{E_{\mathrm{cm}}},
$$

- assume N_{d} channels
- particle masses $m_{1 a}, m_{2 a}$ and spins $s_{1 a}, s_{2 a}$ of particle 1 and 2
- for each channel, can calculate

$$
\begin{aligned}
\boldsymbol{q}_{\mathrm{cm}, a}^{2} & =\frac{1}{4} E_{\mathrm{cm}}^{2}-\frac{1}{2}\left(m_{1 a}^{2}+m_{2 a}^{2}\right)+\frac{\left(m_{1 a}^{2}-m_{2 a}^{2}\right)^{2}}{4 E_{\mathrm{cm}}^{2}} \\
u_{a}^{2} & =\frac{L^{2} \boldsymbol{q}_{\mathrm{cm}, a}^{2}}{(2 \pi)^{2}}, \quad \boldsymbol{s}_{a}=\left(1+\frac{\left(m_{1 a}^{2}-m_{2 a}^{2}\right)}{E_{\mathrm{cm}}^{2}}\right) \boldsymbol{d}
\end{aligned}
$$

Quantization condition re-expressed

- E related to S matrix (and phase shifts) by

$$
\operatorname{det}\left[1+F^{(\boldsymbol{P})}(S-1)\right]=0
$$

- F matrix in JLSa basis states given by

$$
\begin{gathered}
\left\langle J^{\prime} m_{J^{\prime}} L^{\prime} S^{\prime} a^{\prime}\right| F^{(P)}\left|J m_{J} L S a\right\rangle=\delta_{a^{\prime} a} \delta_{S^{\prime} S} \frac{1}{2}\left\{\delta_{J^{\prime} J} \delta_{m_{J^{\prime}} m_{J}} \delta_{L^{\prime} L}\right. \\
\left.+\left\langle J^{\prime} m_{J^{\prime}} \mid L^{\prime} m_{L^{\prime}} S m_{S}\right\rangle\left\langle L m_{L} S m_{S} \mid J m_{J}\right\rangle W_{L^{\prime} m_{L^{\prime}} ; L m_{L}}^{(P a)}\right\}
\end{gathered}
$$

- total ang mom J, J^{\prime}, orbital L, L^{\prime}, spin S, S^{\prime}, channels a, a^{\prime}
- W given by

$$
\begin{gathered}
-i W_{L^{\prime} m_{L^{\prime}} ;}^{(\boldsymbol{P a)}}{L m_{L}}^{=} \sum_{l=\left|L^{\prime}-L\right|}^{L^{\prime}+L} \sum_{m=-l}^{l} \frac{\mathcal{Z}_{l m}\left(\boldsymbol{s}_{a}, \gamma, u_{a}^{2}\right)}{\pi^{3 / 2} \gamma u_{a}^{l+1}} \sqrt{\frac{\left(2 L^{\prime}+1\right)(2 l+1)}{(2 L+1)}} \\
\times\left\langle L^{\prime} 0, l 0 \mid L 0\right\rangle\left\langle L^{\prime} m_{L^{\prime}}, l m \mid L m_{L}\right\rangle
\end{gathered}
$$

- above expressions apply for both distinguishable and indistinguishable particles

RGL shifted zeta functions

- compute Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta functions $\mathcal{Z}_{\text {lm }}$ using

$$
\begin{aligned}
& \mathcal{Z}_{l m}\left(\boldsymbol{s}, \gamma, u^{2}\right)=\sum_{n \in \mathbb{Z}^{3}} \frac{\mathcal{Y}_{l m}(z)}{\left(z^{2}-u^{2}\right)} e^{-\Lambda\left(z^{2}-u^{2}\right)}+\delta_{l 0} \frac{\gamma \pi}{\sqrt{\Lambda}} F_{0}\left(\Lambda u^{2}\right) \\
& +\frac{i^{l} \gamma}{\Lambda^{l+1 / 2}} \int_{0}^{1} d t\left(\frac{\pi}{t}\right)^{l+3 / 2} e^{\Lambda t u^{2}} \sum_{\substack{n \in \mathbb{Z}^{3} \\
n \neq 0}} e^{\pi i n \cdot s} \mathcal{Y}_{l m}(\mathbf{w}) e^{-\pi^{2} \mathbf{w}^{2} /(t \Lambda)}
\end{aligned}
$$

- where

$$
\begin{aligned}
& z=\boldsymbol{n}-\gamma^{-1}\left[\frac{1}{2}+(\gamma-1) s^{-2} \boldsymbol{n} \cdot \boldsymbol{s}\right] \boldsymbol{s}, \\
& \mathbf{w}=\boldsymbol{n}-(1-\gamma) s^{-2} \boldsymbol{s} \cdot \boldsymbol{n} \boldsymbol{s}, \quad \mathcal{Y}_{l m}(\mathbf{x})=|\mathbf{x}|^{l} Y_{l m}(\widehat{\mathbf{x}}) \\
& F_{0}(x)=-1+\frac{1}{2} \int_{0}^{1} d t \frac{e^{t x}-1}{t^{3 / 2}}
\end{aligned}
$$

- choose $\Lambda \approx 1$ for convergence of the summation
- integral done Gauss-Legendre quadrature
- $F_{0}(x)$ given in terms of Dawson or erf function

K matrix

- quantization condition relates single energy E to entire S-matrix
- cannot solve for S-matrix (except single channel, single wave)
- approximate S-matrix with functions depending on handful of fit parameters
- obtain estimates of fit parameters using many energies
- easier to parametrize Hermitian matrix than unitary matrix
- introduce K-matrix (Wigner 1946)

$$
S=(1+i K)(1-i K)^{-1}=(1-i K)^{-1}(1+i K)
$$

- Hermiticity of K-matrix ensures unitarity of S-matrix
- with time reversal invariance, K-matrix must be real and symmetric

K matrix

- rotational invariance implies

$$
\left\langle J^{\prime} m_{J^{\prime}} L^{\prime} S^{\prime} a^{\prime}\right| K\left|J m_{J} L S a\right\rangle=\delta_{J^{\prime} J} \delta_{m_{J^{\prime}} m_{J}} K_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{(J)}(E)
$$

where $K^{(J)}$ is real, symmetric, independent of m_{J}

- invariance under parity gives

$$
K_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{(J)}(E)=0 \quad \text { when } \eta_{1 a^{\prime}}^{P \prime} \eta_{1 a}^{P} \eta_{2 a^{\prime}}^{P \prime} \eta_{2 a}^{P}(-1)^{L^{\prime}+L}=-1
$$

where $\eta_{j a}^{P}$ is intrinsic parity of particle j in channel a

- multichannel effective range expansion (Ross 1961)

$$
K_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{-1}(E)=q_{a^{\prime}}^{-L^{\prime}-\frac{1}{2}} \widehat{K}_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{-1}\left(E_{\mathrm{cm}}\right) q_{a}^{-L-\frac{1}{2}}
$$

where $\widehat{K}_{L^{\prime} S^{\prime} a^{\prime} ;}^{-1} ; L S a\left(E_{\mathrm{cm}}\right)$ real, symmetric, analytic function of E_{cm}

The "box matrix" B

- effective range expansion suggests writing

$$
K_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{-1}(E)=u_{a^{\prime}}^{-L^{\prime}-\frac{1}{2}} \widetilde{K}_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{-1}\left(E_{\mathrm{cm}}\right) u_{a}^{-L-\frac{1}{2}}
$$

since $\widetilde{K}_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{-1}\left(E_{\mathrm{cm}}\right)$ behaves smoothly with E_{cm}

- quantization condition can be written

$$
\operatorname{det}\left(1-B^{(P)} \widetilde{K}\right)=\operatorname{det}\left(1-\widetilde{K} B^{(P)}\right)=0
$$

- we define the box matrix by

$$
\begin{gathered}
\left\langle J^{\prime} m_{J^{\prime}} L^{\prime} S^{\prime} a^{\prime}\right| B^{(\boldsymbol{P})}\left|J m_{J} L S a\right\rangle=-i \delta_{a^{\prime} a} \delta_{S^{\prime} S} u_{a}^{L^{\prime}+L+1} W_{L^{\prime} m_{L^{\prime}} ; L m_{L}}^{(\boldsymbol{P a)}} \\
\times\left\langle J^{\prime} m_{J^{\prime}} \mid L^{\prime} m_{L^{\prime}}, S m_{S}\right\rangle\left\langle L m_{L}, S m_{S} \mid J m_{J}\right\rangle
\end{gathered}
$$

- box matrix is Hermitian for u_{a}^{2} real
- quantization condition can also be expressed as

$$
\operatorname{det}\left(\widetilde{K}^{-1}-B^{(P)}\right)=0
$$

- these determinants are real

Block diagonalization

- quantization condition involves determinant of infinite matrix
- make practical by (a) transforming to a block-diagonal basis and (b) truncating in orbital angular momentum
- for symmetry operation G, define unitary matrix

$$
\left\langle J^{\prime} m_{J^{\prime}} L^{\prime} S^{\prime} a^{\prime}\right| Q^{(G)}\left|J m_{J} L S a\right\rangle= \begin{cases}\delta_{J^{\prime} J} \delta_{L^{\prime} L} \delta_{S^{\prime} S} \delta_{a^{\prime} a} D_{m_{J^{\prime}} m_{J}}^{(J)}(R), & (G=R), \\ \delta_{J^{\prime} J} \delta_{m^{\prime} m_{J}} \delta_{L^{\prime} L^{\prime}} \delta_{S^{\prime} S} \delta_{a^{\prime} a}(-1)^{L}, & \left(G=I_{s}\right),\end{cases}
$$

where $D_{m^{\prime} m}^{(J)}(R)$ Wigner rotation matrices, R ordinary rotation, I_{s} spatial inversion

- can show that box matrix satisfies

$$
B^{(G \boldsymbol{P})}=Q^{(G)} B^{(P)} Q^{(G) \dagger} .
$$

- if G in little group of \boldsymbol{P}, then $G \boldsymbol{P}=\boldsymbol{P}, G s_{a}=s_{a}$ and

$$
\left[B^{(\boldsymbol{P})}, Q^{(G)}\right]=0, \quad(G \text { in little group of } \boldsymbol{P}) .
$$

- can use eigenvectors of $Q^{(G)}$ to block diagonalize $B^{(P)}$

Block diagonalization (con’t)

- block-diagonal basis

$$
|\Lambda \lambda n J L S a\rangle=\sum_{m \cdot} c_{m_{J}}^{J(-1)^{L} ; \Lambda \lambda n}\left|J m_{J} L S a\right\rangle
$$

- little group irrep Λ, irrep row ${ }_{\lambda}^{\lambda_{J}}$, occurrence index n
- transformation coefficients depend on J and $(-1)^{L}$, not on S, a
- replaces m_{J} by (Λ, λ, n)
- group theoretical projections with Gram-Schmidt used to obtain coefficients
- use notation and irrep matrices from PRD 88, 014511 (2013)

Box and \widetilde{K} matrices in block diagonal basis

- in block-diagonal basis, box matrix has form

$$
\left\langle\Lambda^{\prime} \lambda^{\prime} n^{\prime} J^{\prime} L^{\prime} S^{\prime} a^{\prime}\right| B^{(P)}|\Lambda \lambda n J L S a\rangle=\delta_{\Lambda^{\prime} \Lambda} \delta_{\lambda^{\prime} \lambda} \delta_{S^{\prime} S} \delta_{a^{\prime} a} B_{J^{\prime} L^{\prime} n^{\prime} ; J L n}^{\left(P \Lambda_{B} S a\right)}(E)
$$

- \widetilde{K}-matrix for $(-1)^{L+L^{\prime}}=1$ has form

$$
\left\langle\Lambda^{\prime} \lambda^{\prime} n^{\prime} J^{\prime} L^{\prime} S^{\prime} a^{\prime}\right| \widetilde{K}|\Lambda \lambda n J L S a\rangle=\delta_{\Lambda^{\prime} \Lambda^{\prime}} \delta_{\lambda^{\prime} \lambda} \delta_{n^{\prime} n} \delta_{J^{\prime} J} \mathcal{K}_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{(J)}\left(E_{\mathrm{cm}}\right)
$$

- $(-1)^{L+L^{\prime}}=1 \Rightarrow \eta_{1 a^{\prime}}^{P \prime} \eta_{2 a^{\prime}}^{P \prime}=\eta_{1 a}^{P} \eta_{2 a}^{P}$, always applies in QCD
- Λ is irrep for K-matrix, need Λ_{B} for box matrix
- when $\eta_{1 a}^{P} \eta_{2 a}^{P}=1$, then $\Lambda_{B}=\Lambda$

\boldsymbol{d}	LG	Λ_{B} relationship to Λ when $\eta_{1 a}^{p} \eta_{2 a}^{p}=-1$
$(0,0,0)$	O_{h}	Subscript $g \leftrightarrow u$
$(0,0, n)$	$C_{4 v}$	$A_{1} \leftrightarrow A_{2} ; B_{1} \leftrightarrow B_{2} ; E, G_{1}, G_{2}$ stay same
$(0, n, n)$	$C_{2 v}$	$A_{1} \leftrightarrow A_{2} ; B_{1} \leftrightarrow B_{2} ; G$ stays same
(n, n, n)	$C_{3 v}$	$A_{1} \leftrightarrow A_{2} ; F_{1} \leftrightarrow F_{2} ; E, G$ stay same

- see PRD 88, 014511 (2013) for notation

K matrix parametrizations

- \widetilde{K} matrix in block diagonal basis

$$
\begin{aligned}
\left\langle\Lambda^{\prime} \lambda^{\prime} n^{\prime} J^{\prime} L^{\prime} S^{\prime} a^{\prime}\right| \widetilde{K}|\Lambda \lambda n J L S a\rangle & =\delta_{\Lambda^{\prime} \Lambda} \delta_{\lambda^{\prime} \lambda} \delta_{n^{\prime} n} \delta_{J^{\prime} J} \mathcal{K}_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{(J)}\left(E_{\mathrm{cm}}\right) \\
\left\langle\Lambda^{\prime} \lambda^{\prime} n^{\prime} J^{\prime} L^{\prime} S^{\prime} a^{\prime}\right| \widetilde{K}^{-1}|\Lambda \lambda n J L a\rangle & =\delta_{\Lambda^{\prime} \Lambda} \delta_{\lambda^{\prime} \lambda} \delta_{n^{\prime} n} \delta_{J^{\prime} J} \mathcal{K}_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{(J)-1}\left(E_{\mathrm{cm}}\right)
\end{aligned}
$$

- common parametrization

$$
\mathcal{K}_{\alpha \beta}^{(J)-1}\left(E_{\mathrm{cm}}\right)=\sum_{k=0}^{N_{\alpha \beta}} c_{\alpha \beta}^{(J k)} E_{\mathrm{cm}}^{k}
$$

- α, β compound indices for (L, S, a)
- another common parametrization

$$
\mathcal{K}_{\alpha \beta}^{(J)}\left(E_{\mathrm{cm}}\right)=\sum_{p} \frac{g_{\alpha}^{(J p)} g_{\beta}^{(J J)}}{E_{\mathrm{cm}}^{2}-m_{J p}^{2}}+\sum_{k} d_{\alpha \beta}^{(J k)} E_{\mathrm{cm}}^{k},
$$

- Lorentz invariant form using $E_{\mathrm{cm}}=\sqrt{s}$
- Mandelstam variable $s=\left(p_{1}+p_{2}\right)^{2}$, with p_{j} four-momentum of particle j

Building blocks for single-hadron operators

- building blocks: covariantly-displaced LapH-smeared quark fields
- stout links $\widetilde{U}_{j}(x)$
- Laplacian-Heaviside (LapH) smeared quark fields

$$
\widetilde{\psi}_{a \alpha}(x)=\mathcal{S}_{a b}(x, y) \psi_{b \alpha}(y), \quad \mathcal{S}=\Theta\left(\sigma_{s}^{2}+\widetilde{\Delta}\right)
$$

- 3d gauge-covariant Laplacian $\widetilde{\Delta}$ in terms of \widetilde{U}
- displaced quark fields:

$$
q_{a \alpha j}^{A}=D^{(j)} \widetilde{\psi}_{a \alpha}^{(A)}, \quad \bar{q}_{a \alpha j}^{A}=\widetilde{\bar{\psi}}_{a \alpha}^{(A)} \gamma_{4} D^{(j) \dagger}
$$

- displacement $D^{(j)}$ is product of smeared links:

$$
D^{(j)}\left(x, x^{\prime}\right)=\widetilde{U}_{j_{1}}(x) \widetilde{U}_{j_{2}}\left(x+d_{2}\right) \widetilde{U}_{j_{3}}\left(x+d_{3}\right) \ldots \widetilde{U}_{j_{p}}\left(x+d_{p}\right) \delta_{x^{\prime}, x+d_{p+1}}
$$

- to good approximation, LapH smearing operator is

$$
\mathcal{S}=V_{s} V_{s}^{\dagger}
$$

- columns of matrix V_{s} are eigenvectors of $\widetilde{\Delta}$

Extended operators for single hadrons

- quark displacements build up orbital, radial structure

Meson configurations

Baryon configurations

- group-theory projections onto irreps of lattice symmetry group

$$
\bar{M}_{l}(t)=c_{\alpha \beta}^{(l) *} \bar{\Phi}_{\alpha \beta}^{A B}(t) \quad \bar{B}_{l}(t)=c_{\alpha \beta \gamma}^{(l) *} \bar{\Phi}_{\alpha \beta \gamma}^{A B C}(t)
$$

- definite momentum p, irreps of little group of p

Two-hadron operators

- our approach: superposition of products of single-hadron operators of definite momenta

$$
c_{p_{a} \lambda_{a} ; \boldsymbol{p}_{b} \lambda_{b}}^{l_{3} I_{I_{b}}} B_{p_{a} \Lambda_{a} \lambda_{a} i_{a}}^{l_{a} I_{a} S_{a}} B_{p_{b} \Lambda_{b} \lambda_{b} i_{b}}^{l_{l_{3} S} b_{b}}
$$

- fixed total momentum $\boldsymbol{p}=\boldsymbol{p}_{a}+\boldsymbol{p}_{b}$, fixed $\Lambda_{a}, i_{a}, \Lambda_{b}, i_{b}$
- group-theory projections onto little group of p and isospin irreps
- restrict attention to certain classes of momentum directions
- on axis $\pm \widehat{x}, \pm \widehat{y}, \pm \widehat{z}$
- planar diagonal $\pm \widehat{x} \pm \widehat{y}, \pm \widehat{x} \pm \widehat{z}, \pm \widehat{y} \pm \widehat{z}$
- cubic diagonal $\pm \hat{x} \pm \widehat{y} \pm \widehat{z}$
- crucial to know and fix all phases of single-hadron operators for all momenta
- each class, choose reference direction $\boldsymbol{p}_{\text {ref }}$
- each \boldsymbol{p}, select one reference rotation $R_{\text {ref }}^{p}$ that transforms $\boldsymbol{p}_{\text {ref }}$ into \boldsymbol{p}
- efficient creating large numbers of two-hadron operators
- generalizes to three, four, ... hadron operators

Quark propagation

- quark propagator is inverse K^{-1} of Dirac matrix
- rows/columns involve lattice site, spin, color
- very large $N_{\text {tot }} \times N_{\text {tot }}$ matrix for each flavor

$$
N_{\text {tot }}=N_{\text {site }} N_{\text {spin }} N_{\text {color }}
$$

- for $32^{3} \times 256$ lattice, $N_{\text {tot }} \sim 101$ million
- not feasible to compute (or store) all elements of K^{-1}
- solve linear systems $K x=y$ for source vectors y
- translation invariance can drastically reduce number of source vectors y needed
- multi-hadron operators and isoscalar mesons require large number of source vectors y

Quark line diagrams

- temporal correlations involving our two-hadron operators need
- slice-to-slice quark lines (from all spatial sites on a time slice to all spatial sites on another time slice)
- sink-to-sink quark lines

- isoscalar mesons also require sink-to-sink quark lines

- solution: the stochastic LapH method!
- (expensive alternative: distillation)

Decay width of ρ

- applied to $I=1 \rho \rightarrow \pi \pi$ system NPB 910, 842 (2016)
- included $L=1,3,5$ partial waves in NPB 924, 477 (2017)
- large $32^{3} \times 256$ anisotropic lattice, $m_{\pi} \approx 240 \mathrm{MeV}$
- fit forms (first ever inclusion of $L=5$ in lattice QCD):

$$
\begin{aligned}
& \left(\widetilde{K}^{-1}\right)_{11}=\frac{6 \pi E_{\mathrm{cm}}}{g^{2} m_{\pi}}\left(\frac{m_{\rho}^{2}}{m_{\pi}^{2}}-\frac{E_{\mathrm{cm}}^{2}}{m_{\pi}^{2}}\right) \\
& \left(\widetilde{K}^{-1}\right)_{33}=\frac{1}{m_{\pi}^{7} a_{3}} \quad\left(\widetilde{K}^{-1}\right)_{55}=\frac{1}{m_{\pi}^{11} a_{5}}
\end{aligned}
$$

- results

$$
\begin{aligned}
& \frac{m_{\rho}}{m_{\pi}}=3.349(25), g=5.97(27), m_{\pi}^{7} a_{3}=-0.00021(100), \\
& m_{\pi}^{11} a_{5}=-0.00006(24), \chi^{2} / \operatorname{dof}=1.15
\end{aligned}
$$

Decay of ρ

- plot of phase shifts

$K \pi$ energies in finite volume

- finite volume energies $32^{3} \times 256$ lattice, $m_{\pi} \approx 240 \mathrm{MeV}$

Decay of $K^{*}(892)$

- studied K^{*} (892)
- included $L=0,1,2$ partial waves
- large $32^{3} \times 256$ anisotropic lattice, $m_{\pi} \approx 240 \mathrm{MeV}$
- fit forms

$$
\left(\widetilde{K}^{-1}\right)_{11}=\frac{6 \pi E_{\mathrm{cm}}}{g_{K^{*} \pi \pi}^{2} m_{\pi}}\left(\frac{m_{K^{*}}^{2}}{m_{\pi}^{2}}-\frac{E_{\mathrm{cm}}^{2}}{m_{\pi}^{2}}\right) \quad\left(\widetilde{K}^{-1}\right)_{22}=\frac{-1}{m_{\pi}^{5} a_{2}}
$$

- S-wave forms tried:

$$
\begin{aligned}
\left(\widetilde{K}^{-1}\right)_{00}^{\mathrm{lin}} & =a_{1}+b_{1} E_{\mathrm{cm}}, \\
\left(\widetilde{K}^{-1}\right)_{00}^{\mathrm{quad}} & =a_{\mathrm{q}}+b_{\mathrm{q}} E_{\mathrm{cm}}^{2}, \\
\left(\tilde{K}^{-1}\right)_{00}^{\mathrm{ERE}} & =\frac{-1}{m_{\pi} a_{0}}+\frac{m_{\pi} r_{0}}{2} \frac{q_{\mathrm{cm}}^{2}}{m_{\pi}^{2}}, \\
\left(\tilde{K}^{-1}\right)_{00}^{\mathrm{BW}} & =\left(\frac{m_{K_{0}^{*}}^{2}}{m_{\pi}^{2}}-\frac{E_{\mathrm{cm}}^{2}}{m_{\pi}^{2}}\right) \frac{6 \pi m_{\pi} E_{\mathrm{cm}}}{g_{K_{0}^{*} \pi \pi}^{2} m_{K_{0}^{*}}^{2}}
\end{aligned}
$$

K-matrix fits

- summary of fit results

Fit	s-wave par.	$m_{K^{*}} / m_{\pi}$	$g_{K^{*} K \pi}$	$m_{\pi} a_{0}$	$\chi^{2} /$ d.o.f.
$(1 \mathrm{a}, 1 \mathrm{~b})$	LIN	$3.819(20)$	$5.54(25)$	$-0.333(31)$	$(1.04,-)$
2	LIN	$3.810(18)$	$5.30(19)$	$-0.349(25)$	1.49
3	QUAD	$3.810(18)$	$5.31(19)$	$-0.350(25)$	1.47
4	ERE	$3.809(17)$	$5.31(20)$	$-0.351(24)$	1.47
5	BW	$3.808(18)$	$5.33(20)$	$-0.353(25)$	1.42
6	BW	$3.810(17)$	$5.33(20)$	$-0.354(25)$	1.50

- $q \bar{q}$ operators in $A_{1 g}(0)$ channel overlap many eigenvectors
- better energy resolution needed for K_{0}^{*} (800) determination (future work)
- from NLO effective range parametrization find $m_{R} / m_{\pi}=4.66(13)-0.87(18) i$ (consistent with BW fit)

Decay of $K^{*}(892)$

- plot of P-wave and S-wave phase shift
- included $L=0,1,2$ partial waves
- large $32^{3} \times 256$ anisotropic lattice, $m_{\pi} \approx 240 \mathrm{MeV}$
- κ fit: quadratic

Comparison to other works

- comparison of our $m_{K^{*}}$ and $g_{K^{*} K \pi}$ to other works

Future work

- $32^{3} \times 256$ lattice run was not optimized for $K \pi$
- larger 48^{3} and 64^{3} lattices should allow better reconstruction of phase shifts
- runs with 96^{3} lattice at physical point in progress!

Decay of Δ

- included $L=1$ wave only (for now) PRD 97, 014506 (2018)
- large $48^{3} \times 128$ isotropic lattice, $m_{\pi} \approx 280 \mathrm{MeV}, a \sim 0.076 \mathrm{fm}$
- with student Christian Walther Andersen (U. Southern Denmark)
- Breit-Wigner fit gives $g_{\Delta N \pi}=19.0(4.7)$ in agreement with experiment ~ 16.9

Conclusion

- two-particle Luscher formalism
- K-matrix from finite-volume energies
- use of the K-matrix and the box B matrix
- successful results depend on time-slice to time-slice quark propagators needed for temporal correlators involving two-hadron operators
- Stochastic LapH method!
- results for $K \pi$ scattering on $32^{3} \times 256$ lattice $(3.7 \mathrm{fm})$ at $m_{\pi} \approx 240 \mathrm{MeV}$
- included $L=0,1,2$ partial waves
- future work in larger volumes and at physical point

