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Overview

q.m. resonance in a box
two-particle Luscher formalism

resonance information from finite-volume energies

two-particle energies in lattice QCD
use of the K-matrix and the box B matrix
recent results
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Resonances in a box: an example

consider a simple quantum mechanical example
Hamiltonian

H = 1
2 p2 + V(r), V(r) = (−4 + 1

16 r4) e−r2/8
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Spectrum of example Hamiltonian

spectrum for E < 4 and l = 0, 1, 2, 3, 4, 5 of example system
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Scattering phase shifts

scattering phase shifts for various partial waves
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More scattering phase shifts

scattering phase shifts for higher partial waves
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Spectrum in box: A1g channel

spectrum discrete in box, periodic b.c., momenta quantized
stationary-state energies in A1g channel shown below
narrow resonance is avoided level crossing, broad resonances?
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Spectrum in box: T1u channel

stationary-state energies in T1u channel shown below
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Scattering phase shifts in lattice QCD timeline

DeWitt 1956: finite-volume energies related to scattering phase
shifts
Lüscher 1986: fields in a cubic box
Rummukainen and Gottlieb 1995: nonzero total momenta
Kim, Sachrajda, and Sharpe 2005: derivation reworked
explosion of papers since then
Briceno 2014: generalized to arbitrary spin, multiple channels
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Two-particle correlator in finite-volume

correlator of two-particle operator σ in finite volume

Bethe-Salpeter kernel

C∞(P) has branch cuts where two-particle thresholds begin
momentum quantization in finite volume: cuts→ series of poles
CL poles: two-particle energy spectrum of finite volume theory
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Corrections from finite momentum sums

finite-volume momentum sum is infinite-volume integral plus
correction F

define the following quantities: A, A′, invariant scattering
amplitude iM
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Quantization condition

subtracted correlator Csub(P) = CL(P)− C∞(P) given by

sum geometric series
Csub(P) = A F(1− iMF)−1 A′.

poles of Csub(P) are poles of CL(P) from det(1− iMF) = 0
key tool: for gc(p) spatially contained and regular

1
L3

∑

p

gc(p) =

∫
d3k

(2π)3 gc(k) + O(e−mL)

1
L3

∑

p

gc(p2)

(p2 − a2)
=

1
L3

∑

p

gc(a2)

(p2 − a2)
+

∫
d3k

(2π)3

gc(p2)−g(a2)

(p2 − a2)
+O(e−mL)
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Kinematics

work in spatial L3 volume with periodic b.c.
total momentum P = (2π/L)d, where d vector of integers
calculate lab-frame energy E of two-particle interacting state in
lattice QCD
boost to center-of-mass frame by defining:

Ecm =
√

E2 − P2, γ =
E

Ecm
,

assume Nd channels
particle masses m1a,m2a and spins s1a, s2a of particle 1 and 2
for each channel, can calculate

q2
cm,a =

1
4

E2
cm −

1
2

(m2
1a + m2

2a) +
(m2

1a − m2
2a)2

4E2
cm

,

u2
a =

L2q2
cm,a

(2π)2 , sa =

(
1 +

(m2
1a − m2

2a)

E2
cm

)
d
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Quantization condition re-expressed

E related to S matrix (and phase shifts) by

det[1 + F(P)(S− 1)] = 0

F matrix in JLSa basis states given by

〈J′mJ′L′S′a′|F(P)|JmJLSa〉 = δa′aδS′S
1
2

{
δJ′JδmJ′mJδL′L

+〈J′mJ′ |L′mL′SmS〉〈LmLSmS|JmJ〉W(Pa)
L′mL′ ; LmL

}

total ang mom J, J′, orbital L,L′, spin S, S′, channels a, a′

W given by

−iW(Pa)
L′mL′ ; LmL

=

L′+L∑

l=|L′−L|

l∑

m=−l

Zlm(sa, γ, u2
a)

π3/2γul+1
a

√
(2L′ + 1)(2l + 1)

(2L + 1)

×〈L′0, l0|L0〉〈L′mL′ , lm|LmL〉.

above expressions apply for both distinguishable and
indistinguishable particles
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RGL shifted zeta functions

compute Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta
functions Zlm using

Zlm(s, γ, u2) =
∑

n∈Z3

Ylm(z)
(z2 − u2)

e−Λ(z2−u2) + δl0
γπ√

Λ
F0(Λu2)

+
ilγ

Λl+1/2

∫ 1

0
dt
(π

t

)l+3/2
eΛtu2 ∑

n∈Z3
n6=0

eπin·sYlm(w) e−π
2w2/(tΛ)

where

z = n− γ−1[ 1
2 + (γ − 1)s−2n · s

]
s,

w = n− (1− γ)s−2s · ns, Ylm(x) = |x|l Ylm(x̂)

F0(x) = −1 +
1
2

∫ 1

0
dt

etx − 1
t3/2

choose Λ ≈ 1 for convergence of the summation
integral done Gauss-Legendre quadrature
F0(x) given in terms of Dawson or erf function
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K matrix

quantization condition relates single energy E to entire S-matrix
cannot solve for S-matrix (except single channel, single wave)
approximate S-matrix with functions depending on handful of fit
parameters
obtain estimates of fit parameters using many energies
easier to parametrize Hermitian matrix than unitary matrix
introduce K-matrix (Wigner 1946)

S = (1 + iK)(1− iK)−1 = (1− iK)−1(1 + iK)

Hermiticity of K-matrix ensures unitarity of S-matrix
with time reversal invariance, K-matrix must be real and
symmetric
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K matrix

rotational invariance implies

〈J′mJ′L′S′a′| K |JmJLSa〉 = δJ′JδmJ′mJ K(J)
L′S′a′; LSa(E)

where K(J) is real, symmetric, independent of mJ

invariance under parity gives

K(J)
L′S′a′; LSa(E) = 0 when ηP′

1a′η
P
1aη

P′
2a′η

P
2a(−1)L′+L = −1,

where ηP
ja is intrinsic parity of particle j in channel a

multichannel effective range expansion (Ross 1961)

K−1
L′S′a′; LSa(E) = q−L′− 1

2
a′ K̂−1

L′S′a′; LSa(Ecm) q−L− 1
2

a ,

where K̂−1
L′S′a′; LSa(Ecm) real, symmetric, analytic function of Ecm
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The “box matrix” B

effective range expansion suggests writing

K−1
L′S′a′; LSa(E) = u−L′− 1

2
a′ K̃−1

L′S′a′; LSa(Ecm) u−L− 1
2

a

since K̃−1
L′S′a′; LSa(Ecm) behaves smoothly with Ecm

quantization condition can be written

det(1− B(P)K̃) = det(1− K̃B(P)) = 0

we define the box matrix by

〈J′mJ′L′S′a′| B(P) |JmJLSa〉 = −iδa′aδS′S uL′+L+1
a W(Pa)

L′mL′ ; LmL

×〈J′mJ′ |L′mL′ , SmS〉〈LmL, SmS|JmJ〉
box matrix is Hermitian for u2

a real
quantization condition can also be expressed as

det(K̃−1 − B(P)) = 0

these determinants are real
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Block diagonalization

quantization condition involves determinant of infinite matrix
make practical by (a) transforming to a block-diagonal basis and
(b) truncating in orbital angular momentum
for symmetry operation G, define unitary matrix

〈J′mJ′L′S′a′|Q(G) |JmJLSa〉 =

{
δJ′JδL′LδS′Sδa′aD(J)

mJ′mJ (R), (G = R),

δJ′JδmJ′mJδL′LδS′Sδa′a(−1)L, (G = Is),

where D(J)
m′m(R) Wigner rotation matrices, R ordinary rotation,

Is spatial inversion

can show that box matrix satisfies

B(GP) = Q(G) B(P) Q(G)†.

if G in little group of P, then GP = P, Gsa = sa and

[B(P),Q(G)] = 0, (G in little group of P).

can use eigenvectors of Q(G) to block diagonalize B(P)
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Block diagonalization (con’t)

block-diagonal basis

|ΛλnJLSa〉 =
∑

mJ

cJ(−1)L; Λλn
mJ

|JmJLSa〉

little group irrep Λ, irrep row λ, occurrence index n

transformation coefficients depend on J and (−1)L, not on S, a

replaces mJ by (Λ, λ, n)

group theoretical projections with Gram-Schmidt used to obtain
coefficients
use notation and irrep matrices from PRD 88, 014511 (2013)
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Box and K̃ matrices in block diagonal basis

in block-diagonal basis, box matrix has form

〈Λ′λ′n′J′L′S′a′| B(P) |ΛλnJLSa〉 = δΛ′Λδλ′λδS′Sδa′a B(PΛBSa)
J′L′n′; JLn(E)

K̃-matrix for (−1)L+L′ = 1 has form

〈Λ′λ′n′J′L′S′a′| K̃ |ΛλnJLSa〉 = δΛ′Λδλ′λδn′nδJ′J K(J)
L′S′a′; LSa(Ecm)

(−1)L+L′ = 1⇒ ηP′
1a′η

P′
2a′ = ηP

1aη
P
2a, always applies in QCD

Λ is irrep for K-matrix, need ΛB for box matrix
when ηP

1aη
P
2a = 1, then ΛB = Λ

d LG ΛB relationship to Λ when ηP
1aη

P
2a = −1

(0, 0, 0) Oh Subscript g↔ u
(0, 0, n) C4v A1 ↔ A2; B1 ↔ B2; E,G1,G2 stay same
(0, n, n) C2v A1 ↔ A2; B1 ↔ B2; G stays same
(n, n, n) C3v A1 ↔ A2; F1 ↔ F2; E,G stay same

see PRD 88, 014511 (2013) for notation
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K matrix parametrizations

K̃ matrix in block diagonal basis

〈Λ′λ′n′J′L′S′a′| K̃ |ΛλnJLSa〉 = δΛ′Λδλ′λδn′nδJ′J K(J)
L′S′a′; LSa(Ecm)

〈Λ′λ′n′J′L′S′a′| K̃−1 |ΛλnJLSa〉 = δΛ′Λδλ′λδn′nδJ′J K(J)−1
L′S′a′; LSa(Ecm)

common parametrization

K(J)−1
αβ (Ecm) =

Nαβ∑

k=0

c(Jk)
αβ Ek

cm

α, β compound indices for (L, S, a)

another common parametrization

K(J)
αβ(Ecm) =

∑

p

g(Jp)
α g(Jp)

β

E2
cm − m2

Jp
+
∑

k

d(Jk)
αβ Ek

cm,

Lorentz invariant form using Ecm =
√

s

Mandelstam variable s = (p1 + p2)2, with pj four-momentum of
particle j
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Building blocks for single-hadron operators

building blocks: covariantly-displaced LapH-smeared quark fields
stout links Ũj(x)

Laplacian-Heaviside (LapH) smeared quark fields

ψ̃aα(x) = Sab(x, y) ψbα(y), S = Θ
(
σ2

s + ∆̃
)

3d gauge-covariant Laplacian ∆̃ in terms of Ũ

displaced quark fields:

qA
aαj = D(j)ψ̃(A)

aα , qA
aαj = ψ̃

(A)

aα γ4 D(j)†

displacement D(j) is product of smeared links:

D(j)(x, x′) = Ũj1(x) Ũj2(x+d2) Ũj3(x+d3) . . . Ũjp(x+dp)δx′, x+dp+1

to good approximation, LapH smearing operator is

S = VsV†s
columns of matrix Vs are eigenvectors of ∆̃
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Extended operators for single hadrons

quark displacements build up orbital, radial structure

Φ
AB
αβ(p, t) =

∑
x eip·(x+ 1

2 (dα+dβ))δab qB
bβ(x, t) qA

aα(x, t)

Φ
ABC
αβγ(p, t) =

∑
x eip·xεabc qC

cγ(x, t) qB
bβ(x, t) qA

aα(x, t)

group-theory projections onto irreps of lattice symmetry group

Ml(t) = c(l)∗
αβ Φ

AB
αβ(t) Bl(t) = c(l)∗

αβγ Φ
ABC
αβγ(t)

definite momentum p, irreps of little group of p
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Two-hadron operators

our approach: superposition of products of single-hadron
operators of definite momenta

cI3aI3b
paλa; pbλb

BIaI3aSa
paΛaλaia BIbI3bSb

pbΛbλbib

fixed total momentum p = pa + pb, fixed Λa, ia,Λb, ib
group-theory projections onto little group of p and isospin irreps
restrict attention to certain classes of momentum directions

on axis ±x̂, ±ŷ, ±ẑ
planar diagonal ±x̂ ± ŷ, ±x̂ ± ẑ, ±ŷ ± ẑ
cubic diagonal ±x̂ ± ŷ ± ẑ

crucial to know and fix all phases of single-hadron operators for
all momenta

each class, choose reference direction pref
each p, select one reference rotation Rp

ref that transforms pref into p

efficient creating large numbers of two-hadron operators
generalizes to three, four, . . . hadron operators
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Quark propagation

quark propagator is inverse K−1 of Dirac matrix
rows/columns involve lattice site, spin, color
very large Ntot × Ntot matrix for each flavor

Ntot = NsiteNspinNcolor

for 323 × 256 lattice, Ntot ∼ 101 million

not feasible to compute (or store) all elements of K−1

solve linear systems Kx = y for source vectors y

translation invariance can drastically reduce number of source
vectors y needed
multi-hadron operators and isoscalar mesons require large
number of source vectors y
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Quark line diagrams

temporal correlations involving our two-hadron operators need
slice-to-slice quark lines (from all spatial sites on a time slice to all
spatial sites on another time slice)
sink-to-sink quark lines

isoscalar mesons also require sink-to-sink quark lines

solution: the stochastic LapH method!
(expensive alternative: distillation)
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Decay width of ρ

applied to I = 1 ρ→ ππ system NPB 910, 842 (2016)
included L = 1, 3, 5 partial waves in NPB 924, 477 (2017)
large 323 × 256 anisotropic lattice, mπ ≈ 240 MeV
fit forms (first ever inclusion of L = 5 in lattice QCD):

(K̃−1)11 =
6πEcm

g2mπ

(
m2
ρ

m2
π

− E2
cm

m2
π

)

(K̃−1)33 =
1

m7
πa3

(K̃−1)55 =
1

m11
π a5

results
mρ
mπ

= 3.349(25), g = 5.97(27), m7
πa3 = −0.00021(100),

m11
π a5 = −0.00006(24), χ2/dof = 1.15
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Decay of ρ

plot of phase shifts
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Kπ energies in finite volume

finite volume energies 323 × 256 lattice, mπ ≈ 240 MeV
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Decay of K∗(892)

studied K∗(892)

included L = 0, 1, 2 partial waves
large 323 × 256 anisotropic lattice, mπ ≈ 240 MeV
fit forms

(K̃−1)11 =
6πEcm

g2
K∗ππmπ

(
m2

K∗

m2
π

− E2
cm

m2
π

)
(K̃−1)22 =

−1
m5
πa2

S-wave forms tried:

(K̃−1)lin
00 = al + blEcm,

(K̃−1)quad
00 = aq + bqE2

cm,

(K̃−1)ERE
00 =

−1
mπa0

+
mπr0

2
q2

cm

m2
π

,

(K̃−1)BW
00 =

(
m2

K∗0

m2
π

− E2
cm

m2
π

)
6πmπEcm

g2
K∗0 ππ

m2
K∗0
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K-matrix fits

summary of fit results

Fit s-wave par. mK∗/mπ gK∗Kπ mπa0 χ2/d.o.f.
(1a,1b) LIN 3.819(20) 5.54(25) −0.333(31) (1.04,–)

2 LIN 3.810(18) 5.30(19) −0.349(25) 1.49
3 QUAD 3.810(18) 5.31(19) −0.350(25) 1.47
4 ERE 3.809(17) 5.31(20) −0.351(24) 1.47
5 BW 3.808(18) 5.33(20) −0.353(25) 1.42
6 BW 3.810(17) 5.33(20) −0.354(25) 1.50

qq operators in A1g(0) channel overlap many eigenvectors
better energy resolution needed for K∗0 (800) determination (future
work)
from NLO effective range parametrization find
mR/mπ = 4.66(13)− 0.87(18)i (consistent with BW fit)
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Decay of K∗(892)

plot of P-wave and S-wave phase shift
included L = 0, 1, 2 partial waves
large 323 × 256 anisotropic lattice, mπ ≈ 240 MeV
κ fit: quadratic
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Comparison to other works

comparison of our mK∗ and gK∗Kπ to other works
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Future work

323 × 256 lattice run was not optimized for Kπ

larger 483 and 643 lattices should allow better reconstruction of
phase shifts
runs with 963 lattice at physical point in progress!
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Decay of ∆

included L = 1 wave only (for now) PRD 97, 014506 (2018)
large 483 × 128 isotropic lattice, mπ ≈ 280 MeV, a ∼ 0.076 fm
with student Christian Walther Andersen (U. Southern Denmark)
Breit-Wigner fit gives g∆Nπ = 19.0(4.7) in agreement with
experiment ∼ 16.9

0.8 0.9 1 1.1 1.2
0.3−

0.2−

0.1−

0

0.1

0.2

πm
N-mcmE

1δ
 c
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mcmq

g
 = 0, H2d
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1
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2
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2
 = 4, G2d
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Conclusion

two-particle Luscher formalism
K-matrix from finite-volume energies

use of the K-matrix and the box B matrix
successful results depend on time-slice to time-slice quark
propagators needed for temporal correlators involving
two-hadron operators

Stochastic LapH method!

results for Kπ scattering on 323 × 256 lattice (3.7 fm) at
mπ ≈ 240 MeV
included L = 0, 1, 2 partial waves
future work in larger volumes and at physical point
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