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Overview

@ g.m. resonance in a box
@ two-particle Luscher formalism
e resonance information from finite-volume energies

@ two-particle energies in lattice QCD
@ use of the K-matrix and the box B matrix
@ recent results
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Resonances in a box: an example

@ consider a simple quantum mechanical example
@ Hamiltonian

H=1p2+v(), V@)= (-4+ L) e/

Kaon-pion



Spectrum of example Hamiltonian

@ spectrum for E < 4and [ =0,1,2,3,4,5 of example system
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Scattering phase shifts

@ scattering phase shifts for various partial waves
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More scattering phase shifts

@ scattering phase shifts for higher partial waves
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Spectrum in box: A, channel

@ spectrum discrete in box, periodic b.c., momenta quantized
@ stationary-state energies in A;, channel shown below
@ narrow resonance is avoided level crossing, broad resonances?

1=0bound state at -0.41 |

L=0 bound state at -2.44
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Spectrum in box: T, channel

@ stationary-state energies in Ty, channel shown below
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Scattering phase shifts in lattice QCD timeline

@ DeWitt 1956: finite-volume energies related to scattering phase
shifts

@ Llscher 1986: fields in a cubic box

@ Rummukainen and Gottlieb 1995: nonzero total momenta

@ Kim, Sachrajda, and Sharpe 2005: derivation reworked

@ explosion of papers since then

@ Briceno 2014: generalized to arbitrary spin, multiple channels
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Two-particle correlator in finite-volume

@ correlator of two-particle operator oin finite volume

.t SRR -

@ Bethe-Salpeter kernel
)y = >+ G >0
+ ¢ + e

@ C°(P) has branch cuts where two-particle thresholds begin
@ momentum quantization in finite volume: cuts — series of poles
@ C’ poles: two-particle energy spectrum of finite volume theory
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Corrections from finite momentum sums

@ finite-volume momentum sum is infinite-volume integral plus
correction F

.
|
|

+

@ define the foIIowmg quantities: A, A’, invariant scattering

amplitude iM
@ - @+ -
+<@/\:\/@:@Z+m
+ @. e
+‘GI§:::€K>¢1'K\7+...
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Quantization condition
@ subtracted correlator Cy,,(P) = CE(P) — C>°(P) given by

CuP= (D@D +

+ (it 20— + ...
C \ n’}’

@ sum geometric series

Cap(P) = A F(1 —iMF)™!
@ poles of Cy,,(P) are poles of CL(P) from det(1 — iMF) =0
@ key tool: for g.(p) spatially contained and regular

3
o b —/ Gy k) + 0™

dsk ¢ ’ —mL
Lzz (p? — a2 L3Z (pz — a2 /27r) . ((1;2)_ ag) )+0(€ )
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Kinematics

@ work in spatial Z*> volume with periodic b.c.
@ total momentum P = (27 /L)d, where d vector of integers

@ calculate lab-frame energy E of two-particle interacting state in
lattice QCD

@ boost to center-of-mass frame by defining:

fe— E
Ecn = E2_P27 ’V:E )

cm

@ assume N, channels
@ particle masses my,, m;, and spins sy,, s2, of particle 1 and 2

@ for each channel, can calculate
2

1 1 (m3, — m3,)?
2 _ 2 2 2 la 2a
qcm-,a - ZEcm - E(mla + mZa) + 4Ec2m )
2.2
WP o= L 9em,a s, =1+ (m%a — m%a) d
‘ (2m)? ‘ E%n
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Quantization condition re-expressed

@ FE related to S matrix (and phase shifts) by
det[1 + FP)(s—1)] =0
@ F matrix in JLSa basis states given by

1
(J’mJ/L/S/a/|F(P)|]mjLSa> = 6a’a6S’S *{&/’ngjzm/(SL’L

(I my |L my Sms) (Limg Sms|Jmy) W }

L'myr; Lmy,
@ total ang mom J,.J', orbital L, L', spin S, 5, channels a, d’
@ W given by
L'+L
Pa Zlm sleY? a (2Ll + 1)(21 + 1)
_lWL/mZ, LmL - Z Z 7_‘_3/2 uH—l (2L + 1)
I=|L'—L| m=—1 v

x (L0, I0|LOY (L' my/, Im|Lmy).

@ above expressions apply for both distinguishable and
indistinguishable particles
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RGL shifted zeta functions

@ compute Rummukainen-Gottlieb-Liischer (RGL) shifted zeta
functions Z,,, using

ylm(z) —AP—i? il 2
Zlm(s;’%uz) = Z S ¢ (@ =) + (5107F0(AM )
= @ ) VA

il 1 1+3/2 . )

ry T 2 s 2w

ol / P ( t ) eAtu E eﬂ'll’l S y] (W) e w-/(t\)
A 0

nez’d
n#0
@ where

z=n—v""[I+(y—1)s72n s]s,
w=n—(1—7)s s ns, Vin(x) = [x|" ¥}, (X)

1 —1
Fo(x):—]+2/dt 1‘3/2
@ choose A =~ 1 for convergence of the summation

@ integral done Gauss-Legendre quadrature
@ Fy(x) given in terms of Dawson or erf function
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K matrix

@ quantization condition relates single energy E to entire S-matrix
@ cannot solve for S-matrix (except single channel, single wave)

@ approximate S-matrix with functions depending on handful of fit
parameters

@ obtain estimates of fit parameters using many energies
@ easier to parametrize Hermitian matrix than unitary matrix
@ introduce K-matrix (Wigner 1946)
S=(1+iK)(1—iK)™" = (1 —iK)"'(1 +iK)
@ Hermiticity of K-matrix ensures unitarity of S-matrix

@ with time reversal invariance, K-matrix must be real and
symmetric
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K matrix

@ rotational invariance implies

<J’mJ/L/S/a/‘ K |JmJLSLZ> = 6J’J6mj/m/ Ké‘/]z"a’; LSa(E)

where K is real, symmetric, independent of m;
@ invariance under parity gives

J /
Ky, 15a(E) =0 when nftnf nfnf, (—1)F % = —1,

where 77_;; is intrinsic parity of particle j in channel a

@ multichannel effective range expansion (Ross 1961)

-1

1
-1 o 3 L—5
KL’S’a/; LSa (E) = 4y

= -]
KL’S’a/; LSa(Ecm) Ga )

where K}, 5,(Eem) real, symmetric, analytic function of Eep,
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The “box matrix” B

@ effective range expansion suggests writing
—1 —L'—3 z—1
KL/S/u’; 15a(E) = uy KL/S/a/; rsa(Ecm) U

since K5, ;5,(Eem) behaves smoothly with E.,

@ quantization condition can be written

1
L—3
a

det(1 — BPIK) = det(1 — KB®)) =0

@ we define the box matrix by

<J’mJ/L/S/a/| B® |JmyLSa) = —ibyadss u£’+L+1 W(Pa)

X (S my |L'my, Sms)(Lmy, Sms|Jmy)
@ box matrix is Hermitian for u2 real
@ quantization condition can also be expressed as
det(K~' —=BP) =0
@ these determinants are real
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Block diagonalization

@ quantization condition involves determinant of infinite matrix

@ make practical by (a) transforming to a block-diagonal basis and
(b) truncating in orbital angular momentum

@ for symmetry operation G, define unitary matrix
6]’16L’L65’Séa’aD§V{,)/m/ (R)7 (G = R),

(J'mpL'S'd'| Q9 |JmyLSa) =
5J/J5mﬂm,5L’L65’55a’a(7I)L; (G = IA‘)?

where D) (R) Wigner rotation matrices, R ordinary rotation,

I; spatial inversion

@ can show that box matrix satisfies
B(GP) — 9(0) B(P) 9(O)F

@ if G in little group of P, then GP = P, Gs, = s, and
BP) 09 =0,  (Ginlitle group of P).
@ can use eigenvectors of Q%) to block diagonalize B
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Block diagonalization (con’t)

@ block-diagonal basis
|[AAnJLSa) = Z cfn(fl)L;A)‘"\JmJLS@

@ little group irrep A, irrep row XJ occurrence index n
@ transformation coefficients depend on J and (—1)%, noton S, a
@ replaces m; by (A, A\, n)

@ group theoretical projections with Gram-Schmidt used to obtain
coefficients

@ use notation and irrep matrices from PRD 88, 014511 (2013)
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Box and K matrices in block diagonal basis

@ in block-diagonal basis, box matrix has form

(NN J'L'S'a'| BP) |AARILSa) = pra0xx8ss0wa Birprs ), (E)
@ K-matrix for (—1)-*%" = 1 has form

(NNRT'L'S'd| K |AMILSG) = a3 x8undsrs KSihrar. 150 (Eem)
o ()M =1 =ik, =nb b, always applies in QCD
@ Ais irrep for K-matrix, need Ay for box matrix
e when ! nf =1,then Ay = A

| d | LG [ Agrelationship to A when . nh = —1 |
( ) | Oy | Subscript g < u

( ) | Ca | Ay <> Ay; By < By E, Gy, G, stay same
(0,n,n) | Gy, | Ay <> Ay; By <> By; G stays same

( ) | G5 | Ay <> Ay; Fy & Fy; E, G stay same

@ see PRD 88, 014511 (2013) for notation
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K matrix parametrizations

@ K matrix in block diagonal basis
(NXNW'TL'S'd'| K [AnILSa) = Sarabxnabundyy K
(NN T'L'S'd| K™ [AAJLSa) = Spradaadumbyry KL

@ common parametrization
Nap
J)—1 Jk
K (Een) = UV EL,

e «a, 3 compound indices for (L, S,a)"

@ another common parametrization

g(Jp) g(BJp) o

J o Ji

K E) = 3 g 4 S
'p

@ Lorentz invariant form usmg Eun = /s

()
L'S’a:
J)—1

L'S’a’;

; LSa (Eﬁm)
L5a(Eem)

@ Mandelstam variable s = (p; + p»)?, with p; four-momentum of

particle j

Kaon-pion
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Building blocks for single-hadron operators

@ building blocks: covariantly-displaced LapH-smeared quark fields
@ stout links U;(x)
@ Laplacian-Heaviside (LapH) smeared quark fields

Gua®) = S (3) Yna(v), S =0 (o2 +4)
@ 3d gauge-covariant Laplacian A in terms of U
@ displaced quark fields:

qﬁa/ = DO)qﬁ(Aa) qﬁ U}ua V4 D(J)
@ displacement DY) is product of smeared links:

DO) (xvxl) = &il ()C) 2 ()C—Fdz) J3 (.X+d3) jp (x+dp)5x’7 Xtdp i
@ to good approximation, LapH smearing operator is
S=VV!

e columns of matrix V, are eigenvectors of A
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Extended operators for single hadrons

@ quark displacements build up orbital, radial structure

Meson configurations

- S R T

58 5D DDL TDU TDO

Baryon configurations

@ﬂﬁaﬂéﬂ”fﬂdf*

SS SD DDI DDL TDO
—AB
(I)aﬂ(pa t) = Z elp (X+ (dw+dﬁ))5 ab Qbﬁ X, t qﬁa
—ABC x _ _ _
(I)aﬁ'y(p7 t) = Zx e? Eabe qry (x7 t) qhﬁ (x7 t) q/aAa (x7 t)
@ group-theory projections onto irreps of lattice symmetry group
3 1)* B N\« —=ABC
Mi(1) = el T (1) Bi(1) = iy, Basy (1)

@ definite momentum p, irreps of little group of p
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Two-hadron operators

@ our approach: superposition of products of single-hadron
operators of definite momenta

Lal3, Lal30Sa 1135 Sp
Paras P Ao PalNaXaia TP Ny Npip

@ fixed total momentum p =p_, +p,, fixed Ay, i, Ap, ip
@ group-theory projections onto little group of p and isospin irreps
@ restrict attention to certain classes of momentum directions
@ on axis &x, &y, 47
o planar diagonal £x +y, +x +7, £y +7
@ cubic diagonal +x +y +7
@ crucial to know and fix all phases of single-hadron operators for
all momenta
e each class, choose reference direction p,.;
e each p, select one reference rotation R’ ; that transforms p,.; into p

ref

o efficient creating large numbers of two-hadron operators
@ generalizes to three, four, ... hadron operators
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Quark propagation

@ quark propagator is inverse K—' of Dirac matrix

e rows/columns involve lattice site, spin, color
@ very large Nt X Ny matrix for each flavor

Nlol - NwileNapinNcolur
e for 32° x 256 lattice, Nio; ~ 101 million

@ not feasible to compute (or store) all elements of K~!
@ solve linear systems Kx = y for source vectors y

@ translation invariance can drastically reduce number of source
vectors y needed

@ multi-hadron operators and isoscalar mesons require large
number of source vectors y
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Quark line diagrams

@ temporal correlations involving our two-hadron operators need
e slice-to-slice quark lines (from all spatial sites on a time slice to all
spatial sites on another time slice)
@ sink-to-sink quark lines

tr 2

@ isoscalar mesons also requwe sink-to-sink quark lines

@ solution: the stochastic LapH method!
o (expensive alternative: distillation)
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Decay width of p

@ appliedto 7 =1 p — 7w system NPB 910, 842 (2016)

@ included L = 1, 3,5 partial waves in NPB 924, 477 (2017)
@ large 32° x 256 anisotropic lattice, m, ~ 240 MeV

o fit forms (first ever inclusion of L = 5 in lattice QCD):

2
([?_1)11 = 67 Eem (mp Egm>

gmy \m:i  m2
- 1 ~ 1
Ky = K )55 = ——
( )33 s ( )ss s

@ results

Mo — 3.349(25), g = 5.97(27), mlas = —0.00021(100),

mry

m!las = —0.00006(24), x*/dof = 1.15
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Decay of p

@ plot of phase shifts
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K7 energies in finite volume

@ finite volume energies 32° x 256 lattice, m, ~ 240 MeV
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Decay of K*(892)

@ studied K*(892)

@ included L = 0, 1, 2 partial waves
@ large 32° x 256 anisotropic lattice, m, ~ 240 MeV

~ 67E, 2. E} ~ —1
271' cm (ml( - cm) (K_l)zz_
gK*Tr‘n'n’lTr

o fit forms
(K Y =
@ S-wave forms tried:
(K65
(R~
(K~ "og '
(K5

C. Morningstar

mromg
= a1+ bEm,
_ 2
= aq+byEy,,

2
—1 M7 Gy

myao 2 m2’

( m?(g EZ, ) 6mmEcm

) 2 2
Me Mz ) 8krnrMk;
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K-matrix fits

@ summary of fit results

Fit s-wave par.  mg«/my gK K Mydo x*/d.o.f.
(1a,1b) LIN 3.819(20) 5.54(25) —0.333(31) (1.04-)
2 LIN 3.810(18) 5.30(19) —0.349(25) 1.49
3 QUAD 3.810(18) 5.31(19) —0.350(25) 1.47
4 ERE 3.809(17) 5.31(20) —0.351(24)  1.47
5 BW 3.808(18) 5.33(20) —0.353(25)  1.42
6 BW 3.810(17) 5.33(20) —0.354(25)  1.50

@ gg operators in A1,(0) channel overlap many eigenvectors

@ better energy resolution needed for K5 (800) determination (future
work)

@ from NLO effective range parametrization find
mg/m,; = 4.66(13) — 0.87(18)i (consistent with BW fit)
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Decay of K*(892)

@ plot of P-wave and S-wave phase shift

@ included L = 0, 1, 2 partial waves

@ large 32° x 256 anisotropic lattice, m, ~ 240 MeV
@ x fit: quadratic
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Comparison to other works

@ comparison of our mg- and gg«x. to other works
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Future work

@ 323 x 256 lattice run was not optimized for K

@ larger 48° and 64° lattices should allow better reconstruction of
phase shifts

@ runs with 96° lattice at physical point in progress!
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Decay of A

@ included L = 1 wave only (for now) PRD 97, 014506 (2018)

@ large 48 x 128 isotropic lattice, m, ~ 280 MeV, a ~ 0.076 fm

@ with student Christian Walther Andersen (U. Southern Denmark)

@ Breit-Wigner fit gives gan- = 19.0(4.7) in agreement with
experiment ~ 16.9

0.2

01"~

M’ =0H[@d*=1,6,
Wc’=3F Wld*=3F,

3
LA L L L L L L B B /AL

2 _
Bd=40,
oale e Lo 1
’ 0.8 0.9 1 11 12
Ecm'mN
mT{
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Conclusion

@ two-particle Luscher formalism
e K-matrix from finite-volume energies
@ use of the K-matrix and the box B matrix

@ successful results depend on time-slice to time-slice quark
propagators needed for temporal correlators involving
two-hadron operators

e Stochastic LapH method!

@ results for K7 scattering on 323 x 256 lattice (3.7 fm) at
my ~ 240 MeV

@ included L = 0, 1,2 partial waves
@ future work in larger volumes and at physical point
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