Pion-Kaon interactions Workshop, JLAB Feb. 14-15, 2018

Comprendre le monde, construire l'avenir®

From πK amplitudes to πK form factors (and back)

INSTITUT DE PHYSIQUE NUCLÉAIR

ORSAY

Bachir Moussallam

Introduction

- $\pi\pi$ scalar form factor
- πK : J = 0 amplitude and scalar form factor
- πK : J = 1 amplitude and vector form factor
- Conclusions

- Light mesons π , K are stable particles in QCD
- meson-meson scattering amplitudes contain fundamental info. on resonances (as complex poles)
- In re-scattering or FSI: same resonance poles but different residues [e.g. κ resonance more visible in $D \rightarrow K\pi\pi$]
- Experimental status:
 - → Before 1985: many dedicated studies of meson-meson amplitudes ($\pi\pi \rightarrow \pi\pi$, $\pi K \rightarrow \pi K$, $\pi\pi \rightarrow K\overline{K}$)
 - → After 1985: mostly FSI data (B, D , J/ψ , $\tau \cdots$ decays)

- Relation between FSI and scattering: <u>Analyticity/Unitarity</u> properties of QCD[Goldberger, Thirring PR 95,1612 (1954)]
- Various complex plane cuts:

 Treatment of FSI easy if scattering is <u>elastic</u> [Omnès, Nuov.Cim. 8,316 (1958)]

$$f_0^{K\pi}(s) = \exp\left(\frac{s}{\pi} \int_{(m_K + m_\pi)^2}^{\infty} \frac{\delta_0^{1/2}(s')}{s'(s' - s)} \, ds'\right)$$

(up to polynomial)
 → (Aizu-Fermi)-Watson theorem holds

Accounting for inelasticity extends region where FSI can be treated

$\pi\pi$ Scalar form factor

 Main ideas for dispersive construction of ππ scalar form factors[Donoghue, Gasser, Leutwyler NP B343,341 (1990)]

$$\langle \pi \pi | \frac{\bar{u}u + \bar{d}d}{\sqrt{2}} | 0 \rangle, \quad \langle \pi \pi | \bar{s}s | 0 \rangle, \quad \langle \pi \pi | \alpha_s G^{\mu\nu} G_{\mu\nu} | 0 \rangle$$

(Motivation: $H \rightarrow \pi\pi$ amplitude if $m_H \leq 1$ GeV) \rightarrow Assume 2-channel unitarity for $J = 0 \pi\pi$ amplitude

 Support for this picture: ππ inelasticity measurement [Hyams et al., NP B64,134 (1973)]

Implied relation with $\pi\pi \rightarrow K\overline{K}$ amplitude:

$$2\left((1-\frac{4m_{\pi}^2}{s})(1-\frac{4m_{K}^2}{s})\right)^{1/4}T_0^{\pi\pi\to K\overline{K}}(s) = \sqrt{1-\eta_0^2}\,\mathrm{e}^{i(\delta_{\pi\pi}+\delta_{K\overline{K}})}$$

Experimental measurements: [Cohen et al., PR D22,2595 (1980), Etkin et al, PR D25,1786 (1982)]

 \rightarrow Validity of 2-ch. model: <u>*E*</u> \leq 1.5 GeV.

Form factors from 2 × 2 T-matrix. → Put: $\vec{F}(s) \equiv \begin{pmatrix} F^{\pi\pi}(s) \\ F^{K\overline{K}}(s) \end{pmatrix}$,

→ Unitarity for form factors:

$$\mathsf{Im}[\vec{F}] = \mathsf{disc}[\vec{F}] = \mathbb{T}\,\Sigma\,\vec{F}^*$$

→ Dispersion relations:

$$\vec{F}(s) = \frac{1}{\pi} \int_{s_{th}}^{\infty} ds' \, \frac{\mathbb{T} \, \Sigma \, \vec{F}^*(s')}{s' - s}$$

No subtractions needed: $F_i(s)_{s\to\infty} \sim \frac{\alpha_s(s)}{s}$ [(Brodsky-Lepage)] → Number of independent solutions: (Noether) index

$$N = \frac{\sum \left(\delta_i(\infty) - \delta_i(s_{th})\right)}{\pi}$$

"Natural" value: N = 2

Two constraints e.g. $F^{\pi\pi}(0)$, $F^{K\overline{K}}(0)$ uniquely define the solutions

$\pi K: J = 0 \text{ amplitude and scalar form} \\ \textbf{factor}$

J = 0, $I = 1/2 \pi K$ amplitude

■ Latest experimental data[Aston et al. (LASS coll.) NP B296, 493 (1988)]: $\pi^+ K^- \rightarrow \pi^+ K^-$

$$t_0^{LASS} = \frac{1}{2i} \Big[\eta_0^{1/2} \mathrm{e}^{2i\delta_0^{1/2}} + \frac{1}{2} \eta_0^{3/2} \mathrm{e}^{2i\delta_0^{3/2}} - \frac{3}{2} \Big]$$

Use also [Estabrooks et al., NP B133, 490 (1978)]

- → Result for inelasticity:
- \rightarrow Driven by $K_0^*(1950)$

- Two-channel model for <u>amplitude</u> and scalar <u>form factor</u> proposed[Jamin, Oller, Pich NP B587,331 (2000), NP B622,279 (2002)]
 - \rightarrow Assumption: $K\eta'$ dominates inelasticity
 - → K-matrix type: resonance poles + ChPT component (also combining $1/N_c$, p^2 expansions)
 - → Scalar form factors then determined from MO equations + two conditions:

$$f_0^{K\pi}(0) = 1 + O((m_s - m_u)^2) \text{ (Ademollo-Gatto)}$$

$$f_0^{K\pi}(m_K^2 - m_\pi^2) = \frac{F_K}{F_\pi} + O(m_\pi^2) \text{ (Callan-Treiman)}$$

NLO ChPT calc.[Gasser, Leutwyler NP B250, 517 (1985)]

- Note: πK scalar form factor is measurable: $\tau \to K \pi \nu_{\tau}$ or $K \to \pi e \nu_e, \pi \mu \nu_{\mu}$ amplitudes:
 - $\sqrt{2}\langle K^+(p_K)|\bar{\boldsymbol{u}}\boldsymbol{\gamma}^{\mu}\boldsymbol{s}|\pi^0(p_{\pi})\rangle = \boldsymbol{f}_+^{K\pi}(t) (p_K + p_{\pi})^{\mu} + \boldsymbol{f}_-^{K\pi}(t) (p_K p_{\pi})^{\mu}$ with $t = (p_K - p_{\pi})^2$. Introduce:

$$f_0^{K\pi}(t) = f_+^{K\pi}(t) + \frac{t}{m_K^2 - m_\pi^2} f_-^{K\pi}(t)$$

→ $f_0^{K\pi}(t)$: Scalar form factor ($K\pi$ scattering in J = 0) → $f_+^{K\pi}(t)$: Vector form factor ($K\pi$ scattering in J = 1)

Prediction of two channel model: Using

$$f_0^{K\pi}(0) = 0.968(3), \qquad \frac{F_K}{F_\pi} = 1.194(5)$$

[FLAG, EPJ C77,112 (2017)] (LQCD 2+1 simulations)

Presence of a (quasi) zero: some suppression of $K_0^*(1430)$ peak

$\pi K: J = 1 \text{ amplitude and vector form} \\ \textbf{factor}$

P-wave amplitude:

Branching fractions:

	Kπ	$K^*\pi$	Κρ
<i>K</i> *(1410)	6.6 ± 1	> 40	< 7
<i>K</i> *(1680)	38.7 ± 2.5	$29.9^{+2.2}_{-4.7}$	$31.4^{+4.7}_{-2.1}$

Amplitude model with 3 channels

 [B.M., EPJ C35, 401 (2008)]
 (1) Kπ
 (2) K*π
 (3) Kρ

Four resonances:

 $K^*(892)$, $K^*(1410)$, $K^*(1680)$, $K^*(2300)$ (not in PDG)

Couplings:

K-matrix

 $g_R^i(s)$: s-dependence from Chiral Lagrangian $K^*(1410)$ suppressed coupl. to $K\rho$ $K^*(1680)$ couplings approx. equal Fit to LASS P-wave data:

15 parameters, $\chi^2/d.o.f = 1.8$

Vector form factor from 3-channel T-matrix

• Need 3 values at t = 0: $\begin{cases}
H_1(0) = f_+^{K\pi}(0) = f_0^{K\pi}(0) : \text{ known} \\
H_2(0) \\
H_3(0)
\end{cases}$

→ In chiral limit (exact flav. symm.) + assuming \underline{VMD} → relation with ABJ anomaly

$$H_2(0) = -H_3(0) = rac{\sqrt{2}N_cM_V}{16\pi^2F_VF_\pi} \simeq 1.50 \,\, {
m GeV^{-1}}$$

→ Allowing for linear flav. symm. breaking

 $H_2(0) = 1.50 (1 + a), \quad H_3(0) = -1.50 (1 + b)$

we expect: $|a|, |b| \leq 30\%$

Fit to $\tau^- \to K_S \pi^- \nu_{\tau}$ data [Belle, PL B654,65 (2007)] $\frac{\chi^2}{N}$ Belle(2007) 2 params: = 8.6 Vector+Scalar Vector -----1000 Scalar 100 events/dE → Log scale: 10 0.1 0.6 0.8 1 1.2 1.4 1.6 1.8 E_{#K} → Linear scale: Belle(2007) 140 Vector+Scalar /ector 120 Scalar 100 80 → Low energy OK 60 (clear κ effect through 40 scalar form factor). 20 0.6 0.8 1.2 1.4 1.6 1.8 $E_{\pi K}$ But: $K^*(1410)$ region not in agreement 21/25

- Assume nevertheless that model is correct !
 - \rightarrow Then, τ data can tell us something on πK phase shift
 - Perform fit on combined LASS + τ data, varying
 K-matrix params + sym. breaking params: a, b

→ LASS
$$\chi^2$$
 weighted by 1/2:
 $\frac{\chi^2}{N}\Big|_{Belle} = 2.3 \qquad \frac{\chi^2}{N}\Big|_{LASS} = 3.6$

with a = -0.15, b = -0.21

Comparison of combined fit with Belle:

23/25

Comparison of combined fit with LASS:

24/25

- Reviewed $\pi\pi$, πK form factors beyond elastic region based on some assumptions
- πK scalar form factor plausible: more information on $\pi K \to \eta' K$, $K_0^*(1950) \to \eta' K$ would be essential
- πK vector form factor: seems to require some modif. of J = 1 phase-shift in $K^*(1410)$ region
 - $\tau \rightarrow K\pi v$: Improved statistics (x50) at Belle2 Measure distrib. as a function of πK energy $\pm \vec{p}_{\pi}, \vec{p}_{K}$ directions \Rightarrow separate vector/scalar form factors determinations

