

Recent Belle results related to pion-kaon interactions

Bilas Pal, On behalf of the Belle Collaboration

University of Cincinnati

PKI2018

February 14-15, 2018

Talk Outline

- Belle experiment at KEKB
- $B^+ \rightarrow K^+ K^- \pi^+$
- $\Lambda_c^+ \rightarrow \phi p \pi^0$, $K^- \pi^+ p \pi^0$
- $\Lambda_c^+ \rightarrow p K^+ \pi^-$
- ϕ_3 from $B^{\pm} \rightarrow DK^{\pm}, D \rightarrow K_S^0 \pi^+ \pi^-$
- Summary

Belle Experiment

- Asymmetric energy electron-positron collider
- Runtime: 1999-2010
- Total integrated luminosity ~ 1000 fb^{-1}

On resonance: $\Upsilon(5S)$: 121 fb^{-1}
$\Upsilon(4S): 711 fb^{-1}$
$\Upsilon(3S): 3 f b^{-1}$
$\Upsilon(2S): 25 f b^{-1}$
$\Upsilon(1S): 6 f b^{-1}$
Off resonance/ scan: $\sim 100 f b^{-1}$

presents in B^+ , which give rise to a large local CP asymmetry in this region.

Final-state interaction may contribute to CP-violation. [B. Bhattacharya, M. Gronau, J. Rosner, PLB 726, 337 (2013); I. Bediaga, T. Frederico, O. Lourenco, PRD 89, 094013 (2013)]

$B^+ \rightarrow K^+ K^- \pi^+$

- Rare B background shows peak structure both in M_{bc} and ΔE ; this is due to K-pi misidentification, which includes $B^+ \rightarrow$ $K^+K^-K^+$, $B^+ \rightarrow K^+\pi^-\pi^+$, and their intermediate states!
- Charm veto is used to reject $b \rightarrow c$ background
- Neural Network (NN) is used to suppress the continuum background; input of the NN are the event shape variables
- This analysis uses 711/fb of Y(4S) data⁴

C.L. Hsu et al, PRD 96, 031101 (R) (2017)

$B^+ \to K^+ K^- \pi^+$

$\overline{M_{K^+K^-}}_{ m (GeV/c^2)}$	$N_{ m sig}$	Eff. (%)	$d{\cal B}/dM~(imes 10^{-7})$	\mathcal{A}_{CP}	4.8 σ
0.8 - 1.1	$59.8 \pm 11.4 \pm 2.6$	19.7	$14.0\pm2.7\pm0.8$	$-0.90 \pm 0.17 \pm 0.04$	
1.1-1.5	$212.4 \pm 21.3 \pm 6.7$	19.3	$37.8 \pm 3.8 \pm 1.9$	$-0.16 \pm 0.10 \pm 0.01$	
1.5-2.5	$113.5 \pm 26.7 \pm 18.6$	15.6	$10.0\pm2.3\pm1.7$	$-0.15 \pm 0.23 \pm 0.03$	
2.5 - 3.5	$110.1 \pm 17.6 \pm 4.9$	15.1	$10.0\pm1.6\pm0.6$	$-0.09 \pm 0.16 \pm 0.01$	
3.5-5.3	$172.6 \pm 25.7 \pm 7.4$	16.3	$8.1\pm1.2\pm0.5$	$-0.05 \pm 0.15 \pm 0.01$	

An excess of events and a large CP-asymmetry at $M_{KK} < 1.5$ GeV confirm the previous findings of BaBar and LHCb

BF $(B^+ \rightarrow K^+K^-\pi^+) = (5.38 \pm 0.40 \pm 0.35) \times 10^{-6}$

 $A_{CP} = -0.182 \pm 0.071 \pm 0.016$

Consistent with previous measurements!

To understand the low mass dynamics, a full Dalitz analysis with sizeable dataset is required. Belle II and LHCb should resolve this!

Search for $\Lambda_c^+ \rightarrow \phi p \pi^0$ decays

➤ The decay is similar to the decay of LHCb's hidden-charm penta-quark (P_c⁺) discovery channel Λ_b → J/ψpK⁻. [PRL 115, 072001 (2015)]
 ➤ Hidden-strangeness penta-quark (P_s⁺) may appear in the intermediate state of φp, assuming the underlying mechanism creating the P_c⁺ also holds for P_s⁺, independent of the flavor and mass of P_s⁺ is smaller than 2.151 GeV. [PRD 92, 114030 (2015)]

 LEPS & CLAS collaborations observed a bump at √s ≈2.0 GeV in φ photo-production. [PRL 95, 182001(2005); PRC 89, 055208(2014); PRC 90, 019901 (2014)]
 This analysis uses 915/fb of Belle data collected at and near Y(4S) and Y(5S)

resonances.

Search for $\Lambda_c^+ \rightarrow \phi p \pi^0$ decays

- Two dimensional fit is performed to $K^+K^-p\pi^0$ and K^+K^- invariant masses, in order to extract the Λ_c^+ signal yield.
- Solution Cabibbo-favored $\Lambda_c^+ \rightarrow \phi \Sigma^+ (\rightarrow p \pi^0)$ decay has the same final state and is suppressed by rejecting the events in which $p\pi^0$ system has an invariant mass within 10 MeV of Σ^+ mass.
- → Branching fraction is measured with respect to well measured CF decay $\Lambda_c^+ \rightarrow \pi^+ K^- p$

$$egin{aligned} \mathcal{B}(\Lambda_c^+ o ext{final state}) &= rac{Y_{ ext{Sig}}/arepsilon_{ ext{Sig}}}{Y_{ ext{Norm}}/arepsilon_{ ext{Norm}}} \ & imes \ \mathcal{B}(\Lambda_c^+ o pK^-\pi^+) \end{aligned}$$

Search for hidden-strangeness pentaquark

- > 2D fits (slide # 6) are performed in bins of $m(\phi p)$ for the background-subtracted $m(\phi p)$ distribution.
- > The distribution is then fitted with a RBW for P_s^+ and a phase space contribution obtained from MC simulation.
- > The data shows (**no**) clear evidence of a P_s^+ state

90% CL Upper limits on product branching fractions

 $\mathcal{B}(\Lambda_c^+ \to P_s^+ \pi^0) \times \mathcal{B}(P_s^+ \to \phi p) < 8.3 \times 10^{-5}$

B. Pal et. al., PRD 96, 051102(R) (2017)

This limit is a factor of 6 higher than the product branching measured by LHCb for an analogous hidden-charm pentaquark states $P_c^+(4450)$ [(1.3 ± 0.4)× 10^{-5}]

Branching fraction of $\Lambda_c^+ \to K^- \pi^+ p \pi^0$

➢ CF decay Λ⁺_c → K[−]π⁺pπ⁰ has the same final state topology and is used to adjust the MC-data differences in $φpπ^0$ and K⁺K[−]pπ⁰ decays.

$$\frac{\mathcal{B}(\Lambda_c^+ \to K^- \pi^+ p \pi^0)}{\mathcal{B}(\Lambda_c^+ \to K^- \pi^+ p)} = (0.685 \pm 0.007 \pm 0.018).$$

Absolute branching fraction

 ${\cal B}(\Lambda_c^+ o K^- \pi^+ p \pi^0) = (4.42 \pm 0.05 \pm 0.12 \pm 0.16)\%,$

B. Pal et. al., PRD 96, 051102(R) (2017)

This is the most precise measurement to date.

DCS $\Lambda_c^+ \longrightarrow pK^-\pi^+$ decays

Double Cabibbo-suppressed (DCS) decays seen in charm mesons, but not previously in baryons.

➢ One trial so far: $\frac{B(A_c^+ \to pK^+\pi^-)}{B(A_c^+ \to pK^-\pi^+)} < 4.6 \times 10^{-3}$ at 90% CL by FOCUS [PLB 624, 166 (2005)]
➢ Naïve expectation: $\frac{B(DCS)}{B(CF)} = tan^4\theta_c = 0.00500$

0.285%

Since W-exchange diagram is absent in DCS decay, $\frac{\mathcal{B}(DCS)}{\mathcal{B}(CF)}$ may be smaller than the naïve expectation.

➤This analysis uses the entire Belle Data.

Doubly Cabibbosuppressed decays (DCS)

DCS $\Lambda_c^+ \longrightarrow pK^-\pi^+$ decays

1 st

Observat

 $\frac{\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = (2.35 \pm 0.27 \pm 0.21) \times 10^{-3}$ $= (0.82 \pm 0.12) \tan^4 \theta_c$ (consistent within 1.5 σ with the naïve expectation)

Absolute branching fraction $\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-) = (1.61 \pm 0.23^{+0.07}_{-0.08}) \times 10^{-4}$

S.B. Yang et. al., PRL 117, 011801 (2016)

 ➢ Most of the SCS decays are suppressed by vertex cut. We estimate the contamination of the remaining SCS decays using N(SCS)/N(CF) = ε(SCS)/ε(CF) × B(SCS)/B(CF)
 ➢ After subtraction, we observed 3379 ± 380 ± 78 DCS events with a significance

After subtracting the contribution $\Lambda^*(1520)$ and Δ isobar intermediates, which only contribute to CF decay, the revised ratio

>9σ.

$$\frac{\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = (1.10 \pm 0.17) \tan^4 \theta_c$$

compatible with naïve expectation (within 1.0 σ): no large W-exchange contribution in CF decay.

DCS $\Lambda_c^+ \longrightarrow pK^-\pi^+$ decays

ϕ_3/γ from $B^\pm \to DK^\pm, D \to K^0_S \pi^+ \pi^-$

- $\phi_3 \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$
- Currently least constrained CKM angle
- Best theoretically clean way of measuring ϕ_3 is based on the interferences between $b \rightarrow \overline{u}cs$ and $b \rightarrow u\overline{c}s$ tree level amplitudes. [This is the only CKM angle accessible at tree level.]
- Useful processes are: $B^{\pm} \rightarrow D^{(*)}K^{\pm}$ followed by $D \rightarrow f$ and $B^{\pm} \rightarrow \overline{D^{(*)}}K^{\pm}$ followed by $\overline{D} \rightarrow f$, where f is a common final state
- Currently ϕ_3 precision is limited by small branching fractions ~ $\mathcal{O}(10^{-7})$

ϕ_3/γ Extraction methods:

- **GLW** D meson is reconstructed from CP eigenstate, e.g., $K^+K^-, \pi^+\pi^-, K_S^0\pi^0$ etc. [Gronau & London, PLB 253, 483 (1991); Gronau & Wyler, PLB 265. 172 (1991)]
- **ADS** DCS D decays involved, e.g., $K^+\pi^-$, $K^+\pi^-\pi^0$ etc. [Atwood, Dunietz & Soni, PRD 63, 036005 (2001)]
- **GGSZ** For self-conjugate multibody D final states, e.g. $K_S^0 \pi^+ \pi^-$; involved Dalitz plot analysis of D decays. [Giri, Grossman, Soffer & Zupan, PRD 68, 054018 (2003), Bonder & Poluektov, EPJC 55, 51 (2008)]

In this talk we present a measurement of ϕ_3 using GGSZ method.

ϕ_3/γ from $B^{\pm} \rightarrow DK^{\pm}$, $D \rightarrow K_S^0 \pi^+ \pi^-$

- r_B is the ratio of the absolute values of DK^{\pm} and $\overline{D}K^{\pm}$ amplitudes and δ_B is the strong phase difference between them.
- In model-dependent approach, one performs the Dalitz plot fit to obtain the observables $x_{\pm} = r_B \cos(\pm \phi_3 + \delta_B)$ and $y_{\pm} = r_B \sin(\pm \phi_3 + \delta_B)$
- ϕ_3 (as well as r_B and δ_B) is then extracted from x_{\pm} and y_{\pm}

- In model-independent approach, the Dalitz plot is divided into 2N bins
- The expected number of events in bin *i* is

$$N_{i}^{\pm} = h_{B} \left[K_{\pm i} + r_{B}^{2} K_{\mp i} + 2\sqrt{K_{i} K_{-i}} (x_{\pm i} c_{i} \pm y_{\pm i} s_{i}) \right]$$

- h_B : normalization constant
- *K_i*: number of events in ith bin of flavor tagged D decays
- c_i and s_i: cosine and sine of the strong phase difference between D
 and D amplitudes in ith bin averaged over the bin region.

These are taken from CLEO measurement. [PRD 80, 032002 (2009); PRD 82, 112006 (2010)]

- A large systematic error due to Dalitz model enters the model-dependent approach
- In model-independent approach, this error is replaced by the error due to c_i and s_i , which in future can be reduced using BES-III measurement.

ϕ_3/γ from $B^\pm o DK^\pm$, $D o K_S^0 \pi^+ \pi^-$

- This analysis uses 711/fb of Y(4S) data
- Four dimensional fit is performed to extract the signal yield
- θ_{thr} is the angle between the thrust axis of the B candidate daughters and that of the rest of the events
- F represent the Fisher discriminant: 9 events shape variables as input

ϕ_3/γ from $B^{\pm} \rightarrow DK^{\pm}$, $D \rightarrow K_S^0 \pi^+ \pi^-$

LHCb's results of model-independent GGSZ approach $\phi_3 = (62^{+15}_{-14})^{\circ}$ JHEP 10, 097 (2014)

Parameter	$B^{\perp} \rightarrow DK^{\perp}$			
x_	$+0.095 \pm 0.045 \pm 0.014 \pm 0.010$			
<i>y</i> _	$+0.137^{+0.053}_{-0.057} \pm 0.015 \pm 0.023$			
$\operatorname{corr}(x_{-}, y_{-})$	-0.315	>		
x_+	$-0.110 \pm 0.043 \pm 0.014 \pm 0.007$			
y_+	$-0.050^{+0.052}_{-0.055} \pm 0.011 \pm 0.017$			
$\operatorname{corr}(x_+, y_+)$	+0.059			
H. Aihara et. al., PRD 85, 112014(2012)				
$\phi_3 = (77.3^{+15.1}_{-14.9} \pm 4.1 \pm 4.3)^\circ$				

$r_B = 0.145$	$0 \pm 0.030 \pm$	0.010 ± 0.011
$\delta_B = (129.9)$	$9 \pm 15.0 \pm 3$	$3.8 \pm 4.7)^{\circ}$,

Third errors are due to c_i and s_i parameters. With the use of BES-III data, this for ϕ_3 will be decreased to 1° or less

Bin <i>i</i>	N_i^-	N_i^+
-8	49.8 ± 8.2	37.8 ± 7.5
-7	42.2 ± 8.6	24.9 ± 7.2
-6	0.0 ± 1.9	3.4 ± 2.9
-5	9.6 ± 4.5	23.6 ± 6.2
-4	32.9 ± 7.5	42.1 ± 8.3
-3	3.5 ± 2.8	0.7 ± 2.5
-2	11.3 ± 4.1	0.0 ± 1.3
-1	16.6 ± 5.4	7.7 ± 4.4
1	37.6 ± 8.0	65.1 ± 9.9
2	68.6 ± 9.6	75.5 ± 9.8
3	83.4 ± 10.1	82.4 ± 10.2
4	49.3 ± 9.1	86.5 ± 11.4
5	34.0 ± 7.3	38.3 ± 7.6
6	34.8 ± 6.8	41.9 ± 7.5
7	70.8 ± 10.6	46.4 ± 9.0
8	9.4 ± 4.3	14.2 ± 5.1
Total	574.9 ± 29.9	$601.6 \pm 30.$

ϕ_3/γ from $B^{\pm} \rightarrow DK^{\pm}$, $D \rightarrow K_S^0 \pi^+ \pi^-$

The decay $B^0 \rightarrow D(\rightarrow K_S^0 \pi^+ \pi^-) K^{*0}$ is also useful for this purpose. Belle recently perform a model-independent Dalitz plot analysis using this decay mode. [PTEP 043C01 (2016)]

$$x_{-} = +0.4^{+1.0+0.0}_{-0.6-0.1} \pm 0.0,$$

$$y_{-} = -0.6^{+0.8+0.1}_{-1.0-0.0} \pm 0.1,$$

$$x_{+} = +0.1^{+0.7+0.0}_{-0.4-0.1} \pm 0.1,$$

$$y_{+} = +0.3^{+0.5+0.0}_{-0.8-0.1} \pm 0.1,$$

$$r_{S} < 0.87 \text{ at } 68\% \text{ C.L.},$$

Parameter	$B^{\pm} \rightarrow DK^{\pm}$	
<i>x</i> _	$+0.095 \pm 0.045 \pm 0.014 \pm 0.010$	
y_{-}	$+0.137^{+0.053}_{-0.057}\pm 0.015\pm 0.023$	
$\operatorname{corr}(x_{-}, y_{-})$	-0.315	>
x_+	$-0.110 \pm 0.043 \pm 0.014 \pm 0.007$	
y_+	$-0.050^{+0.052}_{-0.055}\pm 0.011\pm 0.017$	
$\operatorname{corr}(x_+, y_+)$	+0.059	

H. Aihara et. al., PRD 85, 112014(2012) $\phi_3 = (77.3^{+15.1}_{-14.9} \pm 4.1 \pm 4.3)^\circ$ $r_B = 0.145 \pm 0.030 \pm 0.010 \pm 0.011$ $\delta_B = (129.9 \pm 15.0 \pm 3.8 \pm 4.7)^\circ$,

Third errors are due to c_i and s_i parameters. With the use of BES-III data, this for ϕ_3 will be decreased to 1° or less

LHCb's results of model-independent GGSZ approach $\phi_3 = (62^{+15}_{-14})^{\circ}$ JHEP 10, 097 (2014)

ϕ_3/γ from $B^\pm \to DK^\pm, D \to K^0_S \pi^+ \pi^-$

 ϕ_3 constraint improved much in recent years. LHCb taking more data and exploring new modes. Belle II will start soon to be competitive within few years. Ultimate precision will be a degree in 2025-2029!

- We have presented some recent results from Belle experiment which involved the interaction of pion and kaon.
- After many years of its shut down, Belle is still producing exciting results
- Belle II is scheduled to start soon and we expect many more interesting/important results in near future!

