

Bessel Weighted Asymmetries Alexei Prokudin

Unified View of Nucleon Structure

Wigner Distribution

GPDs

 Q^2 ensures hard scale, pointlike interaction

 $\Delta = P' - P \quad \mbox{momentum transfer can be varied} \\ \mbox{independently} \\$

Connection to 3D structure

Burkardt (2000) Burkardt (2003)

$$\rho(x,\vec{r}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\vec{\Delta}_{\perp}\cdot\vec{r}_{\perp}} H_q(x,\xi=0,t=-\vec{\Delta}_{\perp}^2)$$

Drell-Yan frame $\Delta^+ = 0$

Weiss (2009)

Connection to 3D structure

 Q^2

 P_{hT}

Ji, Ma, Yuan (2004) Collins (2011)

$$ilde{f}(x,ec{b}_T) = \int d^2k_\perp e^{iec{b}_T\cdotec{k}_\perp}f(x,ec{k}_\perp)$$

AP (2012)

TMD distributions

8 functions in total (at leading twist)

Each represents different aspects of partonic structure

Each function is to be studied

Jefferson Lab

Kotzinian (1995), Mulders, Tangerman (1995), Boer, Mulders (1998)

TMD distributions

Three types of modulations

 $f(x, \mathbf{k}_{\perp}^2)$

Monopole

 $\frac{\mathbf{k}_{\perp i} S_{Ti}}{M} f(x, \mathbf{k}_{\perp}^2)$

$$\frac{\mathbf{k}_{\perp}^{i}\mathbf{k}_{\perp}^{j}-\frac{1}{2}\mathbf{k}_{\perp}^{2}g_{T}^{ij}}{M^{2}}f(x,\mathbf{k}_{\perp}^{2})$$

Jefferson Lab

Kotzinian (1995), Mulders, Tangerman (1995), Boer, Mulders (1998)

TMD distributions

Extraction of the nucleon structure from the data is one of the main goals of modern facilities such as Jefferson Lab 12

$$f(x, \mathbf{k}_{\perp}^2)$$

Monopole

$$\frac{\mathbf{k}_{\perp i} S_{Ti}}{M} f(x, \mathbf{k}_{\perp}^2)$$

Dipole

$$\frac{\mathbf{k}_{\perp}^{i}\mathbf{k}_{\perp}^{j}-\frac{1}{2}\mathbf{k}_{\perp}^{2}g_{T}^{ij}}{M^{2}}f(x,\mathbf{k}_{\perp}^{2})$$

Quadrupole

Jefferson Lab

Kotzinian (1995), Mulders, Tangerman (1995), Boer, Mulders (1998)

How can TMDs be studied?

Semi Inclusive Deep Inelastic Scattering

One can rewrite the cross-section in terms of **18** structure functions

Each structure function encodes parton dynamics via convolutions of TMDs when factorization is applicable

Mulders, Tangerman (1995), Boer, Mulders (1998) Bacchetta et al (2007)

$$\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} = \frac{\alpha^2}{xy\,Q^2}\,\frac{y^2}{2\,(1-\varepsilon)}\,\left(1+\frac{\gamma^2}{2x}\right)\left\{F_{UU,T}+\varepsilon\,F_{UU,L}+\sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h}\right. \\ \left.+\,\varepsilon\cos(2\phi_h)\,F_{UU}^{\cos\,2\phi_h}+\lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{LU}^{\sin\phi_h}+\ldots\right.$$

Structure functions

Structure functions are convolutions of unobserved partonic momenta:

$$F \sim \int d^2 \vec{k}_{\perp} d^2 \vec{p}_{\perp} \delta^{(2)} (z \vec{k}_{\perp} + \vec{p}_{\perp} - \vec{P}_{h\perp}) f(x, \vec{k}_{\perp}) D(z, \vec{p}_{\perp})$$

Structure functions

Structure functions are convolutions of unobserved partonic momenta: $F \sim \int d^2 \vec{k}_{\perp} d^2 \vec{p}_{\perp} \delta^{(2)} (z \vec{k}_{\perp} + \vec{p}_{\perp} - \vec{P}_{h\perp}) f(x, \vec{k}_{\perp}) D(z, \vec{p}_{\perp})$

Observed in experiment

Can we find a more direct measure?

1

Weighted structure functions

An attempt to unravel the convolution:

$$\int d^2 \vec{P}_{h\perp} F \sim \int d^2 \vec{k}_{\perp} d^2 \vec{p}_{\perp} d^2 \vec{P}_{h\perp} \delta^{(2)} (z\vec{k}_{\perp} + \vec{p}_{\perp} - \vec{P}_{h\perp}) f(x, \vec{k}_{\perp}) D(z, \vec{p}_{\perp})$$
$$= \left(\int d^2 \vec{k}_{\perp} f(x, \vec{k}_{\perp}) \right) \left(\int d^2 \vec{p}_{\perp} D(z, \vec{p}_{\perp}) \right) \equiv f^{(0)}(x) \cdot D^{(0)}(z)$$

A product instead of the convolution!

Kotzinian, Mulders (1997), Boer, Mulders (1998)

The problem:

1

The problem:

1

Can we circumvent the problem and emphasize the region of TMD?

INT 2010 Think Tank

1

Gluons and the quark sea at high energies: distributions, polarization, tomography

September 13 to November 19, 2010

Report from the INT program <u>"Gluons and the quark sea at high energies:</u> <u>distributions, polarization, tomography"</u> Daniel Boer Leonard Gamberg Berni Musch AP

Came up with an idea!

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs

Structure functions, quark longitudinal momentum & helicity distributions

 $f(\mathbf{x})$

Boer, Gamberg, Musch, Prokudin JHEP 1110 (2011)

INT 2010 Think Tank

The cross-section is a Fourier transform of b-space expression:

The idea: Use a function that suppresses large momenta

 $\frac{d\sigma}{dx_{\scriptscriptstyle B}\,dy\,d\psi\,dz_{h}\,d\phi_{h}\,|\boldsymbol{P}_{h\perp}|d|\boldsymbol{P}_{h\perp}|} = \int \frac{d^{2}\boldsymbol{b}_{T}}{(2\pi)^{2}}\,e^{-i\boldsymbol{b}_{T}\cdot\boldsymbol{P}_{h\perp}} \;\left\{\frac{\alpha^{2}}{x_{\scriptscriptstyle B}yQ^{2}}\,\frac{y^{2}}{(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x_{\scriptscriptstyle B}}\right)L_{\mu\nu}\tilde{W}^{\mu\nu}\right\}$

b-space is natural for TMD evolution and has clear physical interpretation of transverse separation of quark fields in the bi-local matrix element

$$\tilde{f}(x,\vec{b}_T) = \int d^2k_\perp e^{i\vec{b}_T\cdot\vec{k}_\perp} f(x,\vec{k}_\perp)$$

Boer, Gamberg, Musch, Prokudin JHEP 1110 (2011)

Bessel Weighting

1

Unpolarized cross-section

$$\sigma = \sigma_0 \int \frac{db_T b_T d\varphi}{(2\pi)^2} e^{-i|b_T||P_{h\perp}|\cos\varphi} \mathcal{F}_{UU}$$
$$= \sigma_0 \int \frac{db_T b_T}{(2\pi)} J_0(|b_T||P_{h\perp}|) \mathcal{F}_{UU}$$

The idea: Use a function that suppresses large momenta

Structure functions in b-space

$$\mathcal{F}_{UU} = x \sum_{a} e_a^2 \tilde{f}(x, z^2 b_T^2) \cdot \tilde{D}(z, b_T^2)$$

A product of FT TMDs instead of the convolution! Boer, Gamberg, Musch, Prokudin JHEP 1110 (2011)

Bessel Weighting

1

Fourier transformed TMDs

$$\tilde{f}(x, b_T^2) = \int d^2 k_{\perp} e^{ib_T k_{\perp}} f(x, k_{\perp}^2) = 2\pi \int dk_{\perp} k_{\perp} J_0(b_T k_{\perp}) f(x, k_{\perp}^2)$$

Fourier transformed derivatives TMDs

$$\tilde{f}^{(n)}(x,b_T^2) \equiv \left(-\frac{2}{M^2}\partial_{b_T^2}\right)\tilde{f}(x,b_T^2)$$

Related to "conventional" moments

$$\tilde{f}^{(n)}(x,\mathbf{0}) \equiv \int d^2k_{\perp} \left(\frac{k_{\perp}^2}{2M^2}\right)^n f(x,k_{\perp}^2) \equiv f^{(n)}(x)$$

Boer, Gamberg, Musch, Prokudin JHEP 1110 (2011)

Bessel Weighting

2

Unpolarized cross-section

$$\sigma = \sigma_0 \int \frac{db_T b_T}{(2\pi)} J_0(|b_T||P_{h\perp}|) \mathcal{F}_{UU}$$

The idea: Use a function that suppresses large momenta

Bessel functions are orthogonal!

$$\int_{0}^{\infty} d|\mathbf{P}_{h\perp}| |\mathbf{P}_{h\perp}| J_{n}(|\mathbf{P}_{h\perp}| |\mathbf{b}_{T}|) J_{n}(|\mathbf{P}_{h\perp}| \mathcal{B}_{T}) = \frac{1}{\mathcal{B}_{T}} \delta(|\mathbf{b}_{T}| - \mathcal{B}_{T})$$
$$\int dP_{h\perp}P_{h\perp} d\Phi_{h} J_{0}(\mathcal{B}_{T}|P_{h\perp}|) \sigma = 2\pi\sigma_{0}x \sum_{a} e_{a}^{2} \tilde{f}(x, z^{2}\mathcal{B}_{T}^{2}) \cdot \tilde{D}(z, \mathcal{B}_{T}^{2})$$
$$\mathcal{B}_{T} (\text{GeV}^{-1}) \text{ is a parameter}$$

Boer, Gamberg, Musch, Prokudin JHEP 1110 (2011)

Bessel Weighting: asymmetries

SIDIS cross-section contains structure functions with

 $\sigma \sim \int \frac{db_T b_T}{(2\pi)} (\dots J_0(|b_T||P_{h\perp}|) + \dots J_1(|b_T||P_{h\perp}|) + \dots J_2(|b_T||P_{h\perp}| + \dots J_3(|b_T||P_{h\perp}|))$

Introduce a weight:

$$w_n \equiv J_n(|\boldsymbol{P}_{h\perp}|\mathcal{B}_T) n! \left(\frac{2}{\mathcal{B}_T}\right)'$$

n=0,1,2,3

Use the weight with the experimental data. Collins effect as an example: $\underline{\rm Collins}$

$$A_{UT}^{\frac{2J_{1}(|P_{h\perp}|\mathcal{B}_{T})}{zM_{h}\mathcal{B}_{T}}\sin(\phi_{h}+\phi_{s})}(\mathcal{B}_{T}) = 2\frac{\frac{\alpha^{2}}{yQ^{2}}\frac{y^{2}}{(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x_{B}}\right)\varepsilon}{\frac{\alpha^{2}}{yQ^{2}}\frac{y^{2}}{(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x_{B}}\right)}$$

$$\times \frac{\sum_{a}e_{a}^{2}H_{UT}^{\sin(\phi_{h}+\phi_{S})}(Q^{2},\mu^{2},\rho)\tilde{h}_{1}^{(0)a}(x,z^{2}\mathcal{B}_{T}^{2};\mu^{2},\zeta,\rho)\tilde{H}_{1}^{\perp(1)a}(z,\mathcal{B}_{T}^{2};\mu^{2},\hat{\zeta},\rho)}{\sum_{a}e_{a}^{2}H_{UT}(Q^{2},\mu^{2},\rho)\tilde{f}_{1}^{(0)a}(x,z^{2}\mathcal{B}_{T}^{2};\mu^{2},\zeta,\rho)\tilde{D}_{1}^{(0)a}(z,\mathcal{B}_{T}^{2};\mu^{2},\hat{\zeta},\rho)}$$

Boer, Gamberg, Musch, Prokudin JHEP 1110 (2011)

2

Can we do it?

 $|P_{h\perp}|_{res}$ resolution of binning. $\Lambda_{TMD} < Q$ region where TMD is still valid

2

Feasibility study

Agasyan, Avakyan, De Sactis, Gamberg, Mirazita, Musch, Prokudin, Rossi JHEP 1110 (2015)

$$\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} = K(x,y)\int \frac{db_T\,b_T}{2\pi} J_0(b_T\,P_{h\perp}) \left(\mathcal{F}_{UU,T}(b_T) + S_{||}\lambda_e\sqrt{1-\varepsilon^2}\mathcal{F}_{LL}(b_T)\right)$$

Generated in JLab 12 kinematics. Acceptance effects and smearing are Studied.

$$\langle x \rangle = 0.22, \ \langle z \rangle = 0.51$$

 $b_T < 6 \; (\text{GeV}^{-1})$

2

Systematical errors ~ few %

 $A_{LL}^{J_0(b_T P_{h\perp})}$ plotted versus b_T .

Conclusions

Conclusions

• Our new method is a generalization of naïve weighting and resolves the problems of the latter

• TMDs can be studied directly in b-space thus allowing for complimentary information to momentum space measurements

 Instead of complicated convolutions one will have to deal with simple products in b-space

Conclusions

• Our new method is a generalization of naïve weighting and resolves the problems of the latter

• TMDs can be studied directly in b-space thus allowing for complimentary information to momentum space measurements

 Instead of complicated convolutions one will have to deal with simple products in b-space

THANK YOU!

