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Outlook

I will report on the ondoing alulation of small-bT mathing oe�ient for transverse

momentum dependent (TMD) fragmentation funtion (FF) within (slightly-modi�ed)

[Ehevarria,Idilbi,Sememi℄ approah at next-to-next-to-leading order (∼ a2s).

Dislaimer

The �nal result is not ready.
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Motivation

Introdution & Motivation

There are many formulations of TMD fatorization.

W = Cf,f ′(zA, zB ;Q,µ) ⊗

∫
dbT

(2π)2
e−ikT bTDA/f (zA, bT ;µ)Ff ′/B(zB , bT ;µ)

Di�erenes between various approahes

(see detailed omparison [Collins, 1409.5408℄)

Di�erent interpretation of non-perturbative ontributions

Di�erent IR regularizations

Prinipal possibility to de�ne individual TMD parton densities.

With individual TMDs

"new" CSS [Collins,textbook℄

"EIS" [Ehevarria,Idilbi,Simemi℄

individually

DA/f (zA, bT ;µ, ζA) and Ff ′/B(zB , bT ; ζB)
are well-de�ned

Without individual TMDs

"BN" [Beher,Neubert℄

only the produt

F (xA, bT ;µ)D(xB , bT ;µ)
is well-de�ned
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Motivation

EIS formulation of TMD fatorization

Within EIS formulation the TMD frationation is given by

W = Hf,f ′(zA, zB;Q,µ)⊗
∫

dbT

(2π)2
e−ikT bT Dzb.

A/f (zA, bT ;µ, δ+)
︸ ︷︷ ︸

TMD FF

F zb.
f ′/B(zB , bT ;µ, δ−)
︸ ︷︷ ︸

TMD PDF

S(bT ; δ+, δ−)
︸ ︷︷ ︸

soft fator

The supersript zb. stands for matrix element with subtrated soft-singularities

q ∼ (λ, λ, λ) (zero-bin subtration)

δ± regularizes rapidity divergenes.

Zero-bin�subtration is equal to the soft-fator [1111.4996℄,

Dzb.
A/f (zA, bT ;µ, δ+) =

Dnaive
A/f

(zA, bT ;µ, δ+, δ−)

S(bT , δ+, δ−)
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Motivation

EIS formulation of TMD fatorization

S(bT ) =
1

Nc
〈0|[−∞n, bT ,∞n̄][∞n̄, 0,−∞n]|0〉, [γ] ∼ P exp

(

−ig

∫

γ
Aγ

)

The ollinear (and rapidity) divergene within soft-fator an appear as

S(bT , δ
+, δ−) = exp

[
A(bT ) ln(δ+δ−) + B(bT )

]
=
√

S(bT , δ+, αδ+)

√

S(bT ,
δ−

α
, δ−)

Re-adjusting soft-fators one de�nes an individual TMD parton density

D(z, bT ;µ, ζ) =

tr
Dir,ol

4zNc

∫
dξ−

(2π)3
eiξ

−k+ ∑

X

〈0|γ+[ξ,∞n]qi (ξ) |X,Ph〉〈X,Ph|q̄j (0) [0,∞n]
†|0〉

√
S (bT , δ+, δ−)

The parameter ζ appears as a ratio of splitting ζ = Q2

α
= (p+)2 δ+δ−

δ2

EIS approah is equivalent to "new CSS" [Collins,Rogers,1210.2100℄,[EIS,1211.1947℄
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Re-adjusting soft-fators one de�nes an individual TMD parton density
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tr
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∫
dξ−

(2π)3
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−k+ ∑

X

〈0|γ+[ξ,∞n]qi (ξ) |X,Ph〉〈X,Ph|q̄j (0) [0,∞n]
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√
S (bT , δ+, δ−)

The parameter ζ appears as a ratio of splitting ζ = Q2

α
= (p+)2 δ+δ−

δ2

EIS approah is equivalent to "new CSS" [Collins,Rogers,1210.2100℄,[EIS,1211.1947℄

NOTE:

Soft fator must ontain only rapidity and ollinear divergenes. No soft divergenes.

Wath over your regulators.
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Motivation

Struture of TMD fatorization

TMD fatorization for proesses with two hadrons Q2 ≫ k2T gives

W = Hf,f ′ (zA, zB;Q,µ) ⊗

∫
dbT

(2π)2
e−ikT bT

Dnaive/
√

S
︷ ︸︸ ︷

DA/f (zA, bT ;µ, ζA)

Fnaive/
√

S
︷ ︸︸ ︷

Ff ′/B(zB , bT ;µ, ζB)

Dependene on fatorization sales is �xed by

equations

µ2
d

dµ2
D(z, bT ; ζ, µ) = 2γD(ζ, µ)D(z, bT ; ζ, µ)

ζ
d

dζ
D(z, bT ; ζ, µ) =

1

2
K̃(bT , µ)D(z, bT ; ζ, µ)

The Cauhy-Riemman ondition for existene

of solution

µ2
dK̃(bT , µ)

dµ2
= 4ζ

dγD(ζ, µ)

dζ
= −2γK (µ).
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Motivation

Small bT behavior

Naively, at zero-bT TMD-operator turns to integrated operator: i.e. at small-bT one an

perform OPE onto integrated FF

"fatorization with maximum perturbative ontent" [Collins℄

D(z, bT ; ζ, µ) =

∫
dy

y
C

(
z

y
, bT ;µ, ζ, κ

)

︸ ︷︷ ︸

mathing oe�.

d(z, κ) +O(bT )

The κ-dependene is then given by

DGLAP equation:

κ2
d

dκ2
d(z, κ) =

∫ 1

z

dy

y
P

(
z

y
, κ

)

d(y, κ)
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Motivation

Small bT behavior

Naively, at zero-bT TMD-operator turns to integrated operator: i.e. at small-bT one an

perform OPE onto integrated FF

"fatorization with maximum perturbative ontent" [Collins℄

D(z, bT ; ζ, µ) =

∫
dy

y
C

(
z

y
, bT ;µ, ζ

)

d(z, µb) +O(bT )

To make expression �nite at bT → 0,
one sets κ = µb ∼ b−1

T .

Works only in viinity of bT = 0,
further "non-perturbative"

modi�ation is needed for bT > 0.

Another operator basis might work

in wider bT region, e.g. Laguerre

based OPE [AV,1402.3182℄
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Motivation

TMD PDF at NNLO [Gehrmann,Lübbert,Yang,1209.0682,1403.6451℄

[Gehrmann,Lübbert,Yang,1209.0682,1403.6451℄ performed the NNLO alulation of

oe�ient funtion for TMD PDF in "NB" sheme.

W = H(Q, µ)⊗
[
S(b2T )F (zA, b

2
T )F (zB , b

2
T )
]

︸ ︷︷ ︸

no individual TMDs

The analytial regulator is used:

∫
ddk

(2π)d−1
δ+(k2) →

∫
ddk

(2π)d−1
δ+(k2)

( ν

k+

)α

α(< 0?) ∼ 0, ν � unphysial mass sale

The regulator is the same for both TMDs, i.e. symmetry n ↔ n̄ is broken

Due to "no-sale-in-dimension-regularization" argument

S(bT ) ≡ 1 (in analytial regularization only)

The ollinear divergenes arrears as poles in α, and anel in the produt of TMDs and

(n ↔ n̄)-symmetry is restored (the �nite term is "ollinear anomaly")

Fn(zA, b
2
T )Fn̄(zB , b

2
T )

︸ ︷︷ ︸

�nite at α → 0

30.05.15 8 / 28



Motivation

TMD PDF at NNLO [Gehrmann,Lübbert,Yang,1209.0682,1403.6451℄

At two-loop

Fn(zA, b
2
T )Fn̄(zB , b

2
T )

=






1A1B + as

(

1AC
[1]
B + C

[1]
A 1B

)

︸ ︷︷ ︸
�nite at α → 0

+a2s

(

1AC
[2]
B + C

[1]
A C

[1]
B + C

[2]
A 1B

)

︸ ︷︷ ︸
�nite at α → 0

+...






⊗ qAqB

Using together with RG equation one an extrat individual mathing oe�ient

funtions.

Luk of the mathing oe�ient for TMD FF (needed analytial ontinuation)

IR sheme dependane (??)

Inability of analytial regulator to regularize soft-fator
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Motivation

Inde�nite soft fator

In [Gehrmann,et al℄ the soft fator is set to unity. Due to

"absene-of-sale-in-dimension-regularization". However, to my understanding it is just not

de�ned.

Analytial regulator is de�ned as

(
ν
k+

)α
for every real gluon.

DiagA ≃

∫

ddk
1

(k+ + i0)(k− + i0)

1

k2 + i0
∼

∫
dk+

(k+)1+ǫ

dk−

(k−)1+ǫ

=0 due to dim.reg. axiomati.

DiagB ≃

∫

ddk
ei(kb)T δ(k2)θ(k+)

(k+ + i0)(k− + i0)

( ν

k+

)α
∼

∫ ∞

0

dk+

(k+)1+ǫ+α

(

b2T
4

)ǫ

Analytial regulator unable to regularize divergenes of soft-fator,

leaving it inde�nite.

Does the anelation orret? (�nite parts?)
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Motivation

Motivations and goals

We would like to hek the anelation of divergenes individually for every TMD

We need expression for soft fator

We need expression for naive ollinear TMD

The expression for TMD FF is under interest

It is novel part of information, whih annot be get from [Gehrmann,et al℄ (sine they

restrit they-self to spae-like separators only)

It is needed for N3LO analysis of TMD FF. So TMD FF and TMD PDF would be

onsidered on equal footing.

Dq/f (zA, bT ; ζ, µ) =
∑

j

∫ 1

zA

dz

z3−2ǫ
dq/j(z, µ)Cj/f

( zA

z
, bT ; ζ, µ

)

+O(bT ),

Cj/f (z, bT ; ζ, µ) = C
[0]
j/f

(z, bT ; ζ, µ)
︸ ︷︷ ︸

δjf δ(z−1)

+

g2

(4π)2

︷︸︸︷
as C

[1]
j/f

(z, bT ; ζ, µ)
︸ ︷︷ ︸

[Collins,textbook℄

[EIS,1402.0869℄

+a2s C
[2]
j/f

(z, bT ; ζ, µ)
︸ ︷︷ ︸

desired

+...
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Struture of expression

Small-bT fatorization

D(z, bT ) = C(z, bT )⊗
d(z)

z3−2ǫ
,

C[0] = δ(1 − z), d[0](z) = δ(1 − z), D[1](z, bT ) = δ(1 − z)

The order-by-order perturbative de�nition of mathing oe�ient:

C
[1]
j/f

= D
[1]
j/f

−
d
[1]
j/f

z3−2ǫ

C
[2]
j/f

= D
[2]
j/f

−
∑

x

D
[1]
j/x

⊗
d
[1]
x/f

z3−2ǫ
−

d
[2]
j/f

z3−2ǫ

The main di�ulty is to alulate D
[2]
j/f
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Struture of expression

Perturbative struture of D

Renormalized expression for parton-parton (here parton=quark) reads

D = Z−1
2
︸︷︷︸

quark

ren.

onst.

ZD
︸︷︷︸

TMD FF

ren.

onst.

free of IR singularities

︷ ︸︸ ︷
(

∆
︸︷︷︸

"naive"

ollinear

S− 1
2

︸ ︷︷ ︸
SF

)
,

We perform the operator renormalization after the multipliation of ∆ and S−1/2
, i.e.

soft fator is a part of operator

There are no overlapping UV×IR divergenes to renormalize

No reason to evaluate UV part of diagrams, whih signi�antly simplify the alulation

Within our regularization the renormalization and multipliation do not ommute.

Therefore, other way (multipliation of renormalized soft fator and ∆) would lead to

di�erent result (?), and may be IR-singular.

The renormalization onstants are "C-numbers" (no distributions), therefore,

renormalization is multipliative (in ontrast to onvolutions)

∆ = 〈

renormalization

loal

︷ ︸︸ ︷

qW †(x, bT ) |q,X〉〈q, X|

renormalization

loal

︷ ︸︸ ︷

qW †(0)
︸ ︷︷ ︸

exhange interations are UV �nite

〉
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Struture of expression

Perturbative struture of D

1-loop

2-loop

D = ∆[0] +

(

∆[1] −
S[1]∆[0]

2
+
(

Z
[1]
D − Z

[1]
2

)

∆[0]

)

+

[

∆[2] −
S[1]∆[1]

2
−
S[2]∆[0]

2
+

3S[1]S[1]∆[0]

8
+
(

Z
[1]
D − Z

[1]
2

)
(

∆[1] −
S[1]∆[0]

2

)

+
(

Z
[2]
D − Z

[2]
2 − Z

[1]
2 Z

[1]
D + Z

[1]
2 Z

[1]
2

)

∆[0]

]

+ a3s ...
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Struture of expression
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Struture of expression

Perturbative struture of D

1-loop

2-loop

pure UV

pure UV

IR-good

UV-sub-divergenes subtration

IR-good

IR-good implies anelation of mass-divergenes and rapidity divergenes,

but not ollinear divergenes,whih to be anel by mathing proedure
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2

)
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−
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)
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[2]
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2 Z
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[1]
2
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]

+ a3s ...
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Regularizations

Regularizations

Massless quarks

On-shell inoming partons

dimensional regularization d = 4− 2ǫ






"δ-regularization"

{

UV divergenes

Other IR divergenes (mass-divergenes)

(λ, λ, λ)

Collinear divergenes (λ2, 1, λ)

Rapidity divergenes (λ, λ−1, 1)

δ-regularization

In original EIS approah the rapidity divergenes were regularized as

1

k± + i0
−→

1

k± + iδ±
, δ± → +0.

At two-loop suh regularization violates exponentiation, and may result to non-anelation of

divergenes.
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Regularizations

=
1

(p+ + iδ)(p+ + k+ + iδ)(p+ + k+ + l+ + iδ)

Within original δ-regularization, the exponentiation is broken

DiagA +DiagB =
Diag

2
C

2
+ δ+

∫
ddk

k2
ddl

l2
1

(k+ + l+)k+l+(k− + l−)k−
︸ ︷︷ ︸

1
δ+

divergent

That an result to arti�ial singularities in δ

To inomplete anelation of ln δ, that will ause problems at higher loops.
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Regularizations

=
1

(p+ + iδ)(p+ + k+ + 2iδ)(p+ + k+ + l+ + 3iδ)

δ-regularization preserving exponentiation

The regularization should be implemented on the level of operator

P exp

[

−ig

∫ ∞

0
dσA±(σn)

]

−→ P exp

[

−ig

∫ ∞

0
dσA±(σn)e−δ±|σ|

]

Then exponentiation is exat

DiagA +DiagB =
Diag

2
C

2
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Regularizations

=
1

(p+ + iδ)(p+ + k+ + 2iδ)(p+ + k+ + l+ + 3iδ)

δ-regularization preserving exponentiation

The regularization should be implemented on the level of operator

P exp

[

−ig

∫ ∞

0
dσA±(σn)

]

−→ P exp

[

−ig

∫ ∞

0
dσA±(σn)e−δ±|σ|

]

Then exponentiation is exat

DiagA +DiagB =
Diag

2
C

2

In any form, δ-regularization violate gauge-invariane linearly, beware of linearly divergent

integrals.

Is there any regularization with sale for light-like half-in�nite Wilson lines without any

problem?

30.05.15 16 / 28



One-loop

How does it work at one-loop

Soft fator

Notation:

δδδ = −2δ+δ−

BBB =
b2T
4

Lδ = ln
(
BBBδδδe2γE

)

DiagA = −2CF δδδ
−ǫΓ2(ǫ)Γ(1 − ǫ)

DiagB = −2CF

[

BBBǫΓ(−ǫ)(Lδ − ψ(−ǫ)− γE)
︸ ︷︷ ︸

UV �nite

−δδδ−ǫΓ2(ǫ)Γ(1 − ǫ)
]

Only single logarithm of δδδ remains at all orders of ǫ-expansion.

Expression is

1
ǫ2

divergent, it is ollinear singularity.
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One-loop

How does it work at one-loop

Collinear matrix element

Notation:

λλλδ = ln

(
δ+

p+

)

Lb = ln

(

b2T
4

µ2

e−2γE

)

∆[1] =
CF

z2

[−1

ǫ

(
2(1 + z2)

1− z

)

+

+ δ(z̄)
3 + 4λλλδ

ǫ

+ 2

(

z̄ − Lb
1 + z2

1− z

)

+

+ δ(z̄)(1 + 3Lb + 4Lbλλλδ) + ..
]

Only single logarithm (λλλδ) at all orders of ǫ-expansion.

λλλδ omes from singularity at z → 0

∆(z) =
1

z

(

z lim
δ→0

∆(z)

)

+

+ δ(1 − z) lim
δ→0

∫ 1

0
dxx∆(x)
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One-loop

How does it work at one-loop

Renormalization

Notation:

λλλδ = ln

(
δ+

p+

)

DiagA = 0, "no-sale-in-dimensional-regularization"

IR-singularity exatly anel UV-singularity

DiagA+A∗

∣
∣
∣
UV

= CF
4

ǫ
(1 +λλλδ)δ(z̄), SFA+A∗

∣
∣
∣
UV

= asCF




−4

ǫ2
− 4

ln
(

2δ+δ−

µ2

)

ǫ



 .

Combining it together at δ+δ− =
(

δ+

p+

)2
ζ we �nd renormalization onstant

Z
[1]
D = −CF




2

ǫ2
+

4 + 2 ln
(

µ2

2ζ

)

ǫ



 .
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One-loop

How does it work at one-loop

D[1] =

δ anels

︷ ︸︸ ︷

∆[1] −
S[1]

2
−Z

[1]
2 + Z

[1]
D =

CF

z2

[−2

ǫ

(
(1 + z2)

1− z

)

+

+ 2

(

z̄ − Lb
1 + z2

1− z

)

+

+δ(z̄)

(

−LLL2
b + 2LLLbLLLζ + 3LLLb + 1−

π2

6

)]

.

In our set of regularization d is saleless, i.e. all diagrams are equal to zero.

Thus, d is pure UV-renormalization onstant (DGLAP kernel)

d[1] = −2
CF

ǫ

(
1 + z2

1− z

)

+

The singularities at ǫ→ 0 anel is ∆[1] − d[1]

z2−ǫ

One-loop result

C[1] =
CF as

z2

[

− 2Lb/zPqq(z) + 2z̄ + δ(z̄)

(

−LLL2
b + 2LLLbLLLζ + 3LLLb −

π2

6

)]

.

Coinide with [Collins,textbook℄
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Two-loop

Two-loop: general struture

Counting powers of ln δ

Logarithm of soft-fator must be proportional to single ln(δ+δ−), otherwise de�nition of

individual TMDs impossible.

S = exp
[
A ln(δ+δ−) +B

]
= 1 + S[1]

︸︷︷︸

CF ln δ

+ S[2]
︸︷︷︸

C2
F

ln2 δ+CFCA ln δ+CFNF ln δ

∆[1] ∼ CF

[

(...)+ + δ(z̄)(ln δ + ..)
]

D[2] = ∆[2] −
S[1]∆[1]

2
−
S[2]∆[0]

2
+

3S[1]S[1]∆[0]

8
+ ....
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Two-loop

Two-loop: general struture

Counting powers of ln δ

Logarithm of soft-fator must be proportional to single ln(δ+δ−), otherwise de�nition of

individual TMDs impossible.

S = exp
[
A ln(δ+δ−) +B

]
= 1 + S[1]

︸︷︷︸

CF ln δ

+ S[2]
︸︷︷︸

C2
F

ln2 δ+CFCA ln δ+CFNF ln δ

∆[1] ∼ CF

[

(...)+ + δ(z̄)(ln δ + ..)
]

CFCA and CFNf part

D[2] = ∆[2] −
S[1]∆[1]

2
−
S[2]∆[0]

2
+

3S[1]S[1]∆[0]

8
+ ....

Struture of ∆[2] ∼ CA and ∼ Nf part should be

(free of ln δ)+ + δ(1 − z) (linear in ln δ)

Rather straightforward anelation, an be traed diagram-by-diagram.
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Two-loop

Two-loop: general struture

Counting powers of ln δ

Logarithm of soft-fator must be proportional to single ln(δ+δ−), otherwise de�nition of

individual TMDs impossible.

S = exp
[
A ln(δ+δ−) +B

]
= 1 + S[1]

︸︷︷︸

CF ln δ

+ S[2]
︸︷︷︸

C2
F

ln2 δ+CFCA ln δ+CFNF ln δ

∆[1] ∼ CF

[

(...)+ + δ(z̄)(ln δ + ..)
]

C2
F part

ln δ × (..)+ + δ(z̄)(ln2 δ + ..)

δ(z̄)(ln2 δ + ..)

D[2] = ∆[2] −
S[1]∆[1]

2
−
S[2]∆[0]

2
+

3S[1]S[1]∆[0]

8
+ ....

Struture of ∆[2] ∼ C2
F part should be

(ln δ + ..)+ + δ(1 − z)
(
ln2 δ + ln δ + ..

)

Completed anelation between higher ǫ terms of produts of one-loop expressions.
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Soft fator

Soft fator evaluation

Only web-diagrams (sine exponentiation is preserved)

Complex-onjugated and mirror-onjugated diagrams to be added.
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Soft fator

Problems of δ-regularizations

Violation and restoration of gauge invariane

kµ

(
nµ

k+ − iδ+
−

n̄µ

k− + iδ−

)

∼ δ,

Diagrams with gluon-polarization and F and M .

∼ δ(bT ) part is an artifat of regularization.

Attention point!

δ-regularization an regularize soft divergenes, e.g. diag F. Chek and remove by hands.
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Soft fator

Canelation of δǫ

The general form for the diagram is δδδ = −2δ+δ−, BBB = b2T /4

Diag = δδδ2ǫa(ǫ) + δδδǫBBBǫb(ǫ) +BBB2ǫ[f2(ǫ) ln
2(δδδ)

︸ ︷︷ ︸

To anel

+f1(ǫ) ln(δδδ) + f0(ǫ)]

The diret alulation on�rms the anelation

Final result takes the form

S = exp
[
asBBB

ǫ
(
w1(ǫ) ln

(
δ+δ−

)
+ r1(ǫ)

)
+ a2sBBB

2ǫ
(
w2(ǫ) ln

(
δ+δ−

)
+ r2(ǫ)

)
+ a3s ...

]

30.05.15 24 / 28



Collinear matrix element

∆[2]
evaluation

All virtual-virtual diagrams equal to zero.
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Collinear matrix element

Evaluation: tehnial details

typial expression =

∫
dl dk

(2π)2d
δ

(
z̄

z
p+ − k+

)

ei(kb)T F
[
k+, l+, δ, ...

]

Introdue

1 =

∫ ∞

−∞
dω p+δ(ωp+ − l+)

All eikonal propagator, turns to

1
ω+iδ

,

1
z̄−iδz

, et.

Loop integrals are simple: (3 integrals for VR, 6+3 integrals for RR)

Collet diagrams to anel mass-divergenes.

Integrate over ω, and z (if neessary) (mathematia+hands) (most di�ult part: phases)

∆(z) =
1

z

(

z lim
δ→0

∆(z)

)

+

+ δ(1 − z) lim
δ→0

∫ 1

0
dxx∆(x)
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Collinear matrix element

Canelation of divergenes at CF

Canelation of divergenes in C2
F -part is shown

Individually diagrams diverge as ln4 δ

ln
4 δ and ln

3 δ anel in sum of diagrams for ∆
[2]

ln
2 δ and ln δ anel in the ombination

∆
[2],+
CF −

S[1]∆[1]

2

∣
∣
∣
“plus′′

free of λλλδ.

∆
[2],δ
CF −

S[1]∆[1]

2
+
S[1]S[1]∆[0]

8
free of λλλδ,

The higher orders of ǫ-expansion (∼ ǫ, ǫ2) of 1-loop anel

Renormalization after soft funtion multipliation Z(∆S)

Canelation of divergenes at Nf

All divergenes anel (a la 1-loop)

Canelation of divergenes at CA

∆+
CA

is free of ln δ (as it should be)

∆δ
CA

is under evaluation.

"Surprises" are not expeted.
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Collinear matrix element

Conlusion

The �rst alulation of bT → 0 mathing oe�ient is (nearly) done.

The results to be used for NNLO analysis of SIDIS.

PartNf

4Pqq

27

(

28 + 30Lb + 9L2

b

)

−

8Lb

((

z2 + 1
)

ln z − z̄z
)

3(1− z)

+2

(

1 + z2
)

ln2 z

3(1− z)
+

4 ln z
(

z2 − 9z − 2
)

9(1− z)
+ 4

7z − 5

9

+δ(z̄)

[

−

4

3

(

−

2

3
L
3

b + L
2

bLζ −
π2

3
Lb

)

−

20

9
(3Lb + 2LbLζ)

−

112

27
Lζ +

2

9
L
2

b +

(

−

832

81
+

5π2

9
+

28ζ3
9

)]
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