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N
Outlook

I will report on the ondoing calculation of small-by matching coefficient for transverse

The final result is not ready.

momentum dependent (TMD) fragmentation function (FF) within (slightly-modified)
[Echevarria,Idilbi,Scememi] approach at next-to-next-to-leading order (~ a2).
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Motivation

Introduction & Motivation

There are many formulations of TMD factorization.

dbr
(2m)?

W = Cf,f’(szzB§Q7#)®/

Differences between various approaches

e RO Dy (24, brs W) Fyr 5 (28, brs )

(see detailed comparison [Collins, 1409.5408])

¢ Different interpretation of non-perturbative contributions
9 Different IR regularizations

@ Principal possibility to define individual TMD parton densities.

With individual TMDs Without individual TMDs
"new" CSS [Collins,textbook] "BN" [Becher,Neubert|
"EIS" [Echevarria,Idilbi,Scimemi]
individually only the product
Dayg(za,brsp, Ca) and Fyryp(zp, br; () F(za,br; p)D(xp, br; 1)
are well-defined is well-defined
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Motivation

EIS formulation of TMD factorization
Within EIS formulation the TMD fractionation is given by

W = Hjp(za,28;Q,1)®
db —1 z z — —
[ oz D3l e 84) i o b ) S(ors 676
(S ——

TMD FF TMD PDF soft factor

@ The superscript zb. stands for matrix element with subtracted soft-singularities
g~ (A, A, A) (zero-bin subtraction)

o 8% regularizes rapidity divergences.

@ Zero-bin—subtraction is equal to the soft-factor [1111.4996],

D392 (2a, br; 1, 0%,07)

S(bT75+75_)

D,ZAb/f(zAv bT; s 6+) =

000
o) A

[
G0

0580
0:05)

0,00y
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Motivation

EIS formulation of TMD factorization

S(br) = - Oll=00r, bz, onlloen, 0. —oeal0), ] ~ Pexp (~ig [ 4,)
Y

c

©

The collinear (and rapidity) divergence within soft-factor can appear as

S(br,67,67) = exp[A(br)In(6T67) + B(br)] = 1/S(bT,6+,a5+),/S(bT,%,5—)

Re-adjusting soft-factors one defines an individual TMD parton density

©

D(Z,bT;[L, C) =

trpir,co A&7 et _
o / e ;ww*[f,oon]qi (&) 1, Pu)(X, Pald; (0) [0,00x]"0)

S(bT75+757)

©

2 —
The parameter ¢ appears as a ratio of splitting ¢ = % = (p+)25+5—g
EIS approach is equivalent to "new CSS" [Collins,Rogers,1210.2100],[EIS,1211.1947]

<
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Motivation

EIS formulation of TMD factorization

S(br) = 3 Olf=00m.bro0sloon 0. 00,0, bl ~ Pex (ig [ 4,)
Y

c

& The collinear (and rapidity) divergence within soft-factor can appear as

5—
S(br,67,67) = exp [A(br)In(6T67) + B(br)] = 4/S(br, 6%, adt)y/Sbr, —,67)
(0%
o Re-adjusting soft-factors one defines an individual TMD parton density

D(Z7bT;/J'7 C) =

t ir,co. dg— & _
Uhircol [ B ie™kF ™01yt (e o0, lg; (€)X, Py) (X, Palds (0) [0, 001 10)
NOTE:

Soft factor must contain only rapidity and collinear divergences. No soft divergences.

Watch over your regulators.
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Motivation

Structure of TMD factorization

TMD factorization for processes with two hadrons Q2 > k% gives

Dnaiue’,/\/g Fnaiuez/\/g

dby
W= Hf,f'(zA’zB?Q7#)®/ 27328 RTOT Dy ¢ (24, b15 1,Ca) Fry5(28, b1 1, CB)

(

¢ Dependence on factorization scales is fixed by
RG Z?uaumv equations

d
W2 g Db Go) = 200 (G ) Dz, bri G )

d 1~
Cdng(%bT;C,H) = EK(bTM)D(vaT;C,#)

o The Cauchy-Riemman condition for existence

of solution
dK (br, 1) dvp (¢, 1)
2
= 4 = -2 .
W e ‘— R YK (1)

4
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Motivation

Small by behavior

Naively, at zero-b TMD-operator turns to integrated operator: i.e. at small-by one can
perform OPE onto integrated FF
"factorization with maximum perturbative content" [Collins|

d
Deebricn = [ ¥ (g,bT;u,c,n) d(z, k) + O(br)
N —

matching coeff.

RG cquation

) U Perturbative ’
Q  Perturbativ

llg\lsgralcd FF 9 The k-dependence is then given by
i DGLAP equation:

d Ld
k2 ——d(z, k) :/ Yp (E,n) d(y, K
dr? 2 Y Yy

Perturbativ =

7~

(Cp
o g

€SS cquation
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Motivation

Small by behavior

Naively, at zero-b TMD-operator turns to integrated operator: i.e. at small-by one can

perform OPE onto integrated FF

"factorization with maximum perturbative content" [Collins|

dy

D(z,br; ¢, p) = / ;C (gbeUMC) d(z, up) + O(br)

>

H
Inthr)

Perturbative

Ing-z-) /n(—g—)

[n(—/%—) In (;g—)
Inthx)

Perturbative

DGLAP cquarion

;] K

¢ To make expression finite at by — 0,
one sets k = up ~ b;l.

o Works only in vicinity of by = 0,

further "non-perturbative"

modification is needed for by > 0.

@ Another operator basis might work
in wider by region, e.g. Laguerre
based OPE [AV,1402.3182]
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Motivation

TMD PDF at NNLO [Gehrmann,Liibbert,Yang,1209.0682,1403.6451]

|Gehrmann,Liibbert,Yang,1209.0682,1403.6451| performed the NNLO calculation of
coefficient function for TMD PDF in "NB" scheme.

°

W = H(Q, ) ® [S(b7)F(24,b7)F (25, b7)]
no individual TMDs
9 The analytical regulator is used:
dk dk v\

— 5 (k) — /—6 k) (—
a0+ () a0+ ) (55)
a(< 07) ~ 0, v — unphysical mass scale

<

The regulator is the same for both TMDs, i.e. symmetry n <> 7 is broken

<

Due to "no-scale-in-dimension-regularization" argument
Skr)y=1 (in analytical regularization only)

@ The collinear divergences arrears as poles in «, and cancel in the product of TMDs and
(n < n)-symmetry is restored (the finite term is "collinear anomaly")

Fn(za,b3)Fa(2p,b%)

finite at « — 0
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Motivation

TMD PDF at NNLO [Gehrmann,Liibbert,Yang,1209.0682,1403.6451]

At two-loop

F"(ZAv b%’)Fﬁ(sz b%‘)

— 1atn 4o (140l + 0015) +a2 (140 + O 1 0P1,) 4.

finite at o« — 0

¢ Using together with RG equation one can extract individual matching coefficient

functions.

finite at o« — 0

®qa9B

©

o IR scheme dependance (?77?)

<

Luck of the matching coefficient for TMD FF (needed analytical continuation)

Inability of analytical regulator to regularize soft-factor

30.05.15
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Indefinite soft factor

In [Gehrmann,et al| the soft factor is set to unity. Due to

"absence-of-scale-in-dimension-regularization". However, to my understanding it is just not

defined.
«@
& 9 Analytical regulator is defined as (k%_) for every real gluon.
- /’L \ hd
Sl 1 1 Akt dk
/ ! \,; Diag 4 :/ddk - - - N/
oSt s (kt +i0)(k~ +i0) k? + 10 (kt)tte (k=)tte
NS /
R ’ =0 due to dim.reg. axiomatic.
\\ //'I ?

B SN (k) 2\ €
K s i(kb) §( 1.2 + oo + b
P Diagpy ~ /ddk% (L)~ / _ A (b

T (k* +i0) (k™ +140) Nkt o (kT)ttete \ 4
¢ i‘sﬁ p
AY 1 &
S K 9 Analytical regulator unable to regularize divergences of soft-factor,
S leaving it indefinite.
v @ Does the cancelation correct? (finite parts?)

30.05.15
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Motivation

Motivations and goals
¢ We would like to check the cancelation of divergences individually for every TMD
@ We need expression for soft factor
@ We need expression for naive collinear TMD
@ The expression for TMD FF is under interest
¢ It is novel part of information, which cannot be get from [Gehrmann,et al| (since they

restrict they-self to space-like separators only)
o It is needed for N3 LO analysis of TMD FF. So TMD FF and TMD PDF would be

considered on equal footing.

Dy f(za,br; ¢, 1) Z/ z3 5-dqyi (2, 1) ]/f( NHE u) + O(br),

q2

am?
~=~
Ciyp (2,605 C ) = CL 4 (2,03 ) + a0 CHYy (2,605 ¢ ) +a2 O, (2,0m3¢ ) +

358(2—1) [Collins,textbook] desired
[EIS,1402.0869]
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Structure of expression

Small-bp factorization

d(z
D(z,br) = Cs,br) © 9C)
z

ClO =51 —2), d%z)=61-2), DM(z,br)=05(1-2)
The order-by-order perturbative definition of matching coefficient:

o) w G
11 4 3
Cirr = Pjjr— e

G

d :
R L R s e 17
Cirs =Djsr =251 ® e ~ o

(2]

@ The main difficulty is to calculate D]./f

] 30.05.15
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Structure of expr:

Perturbative structure of D

Renormalized expression for parton-parton (here parton=quark) reads

free of IR singularities

1

D = zy' Z A S73
2 \g ( —~—~ v) )
uark TMD FF "naive" SF
q1ren. ren. collinear

const. const.

9o We perform the operator renormalization after the multiplication of A and 5'_1/2, i.e.

soft factor is a part of operator
@ There are no overlapping UV XIR divergences to renormalize
@ No reason to evaluate UV part of diagrams, which significantly simplify the calculation
@ Within our regularization the renormalization and multiplication do not commute.
Therefore, other way (multiplication of renormalized soft factor and A) would lead to
different result (?), and may be IR-singular.
¢ The renormalization constants are "C-numbers" (no distributions), therefore,
renormalization is multiplicative (in contrast to convolutions)

renormalization renormalization
local local

—_——~— ——
A= ( gW'(,br) |¢,X)(g, X| qW'(0) )

exchange interactions are UV finite

30.05.15 13 / 28



Structure of expression

Perturbative structure of D

[1] A l0]
D= Al (mll _ % + (28 - ) A[‘]]) 1-loop

SIAl  gl2Ial0l 35011 g1 AlO] S AlO]
(2] _ _ (1] _ 7] [ _2 =
+[A : — - + (ZD zl ) A :

+ (Z[;] _Z ZE]Z,[D” + Zél]Zél]) Al 443,

2-loop

] 30.05.15 14 / 28



Structure of expression

Perturbative structure of D

pure UV
+ (25 - 28) A[°> 1-loop

[A[Q] SIIAI  gR2IAl0l 3501 glAl0]
+ _ _

D= A[O] + (A[l] . S[I]A[O]
2

[1] A l0]
[ _ m_ STAT
2 5 ' 8 + (ZD Z2 ) (A 2 >

+ (Z[g] _Z Zél}ZB] + Zél]zél]) Al £43..
2-loop

pure UV

30.05.15 14 / 28



Structure of expression

Perturbative structure of D

IR-good

D=A0 4

2

pure UV

1] Al0]
Al STAT (Z[l] Zm) A“’) 1-loop

2

2-loop

2

Al (21 Al0] RIEBYNY
A[Q]_S AR SEA 3SHSHA ‘*‘(ZB]_ZE])

8

UV-sub-divergences subtraction

pure UV

(A

o S[”A[O]>

2
IR-good

H (28 - 2l - 2 2] + 201 2[7) ALl | a3,

IR-good implies cancelation of mass-divergences and rapidity divergences,
but not collinear divergences,which to be cancel by matching procedure

30.05.15
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Regularizations

¢ Massless quarks

¢ On-shell incoming partons

<

UV divergences
dimensional regularization d = 4 — 2¢

<

Other IR divergences (mass-divergences)
(A7 A? A)

Collinear divergences (A2, 1, )

Rapidity divergences (A, A71,1)

©

"§-regularization" {

<

é-regularization
In original EIS approach the rapidity divergences were regularized as

1 1
_) s
kt 440 k*E + st

5t = 0.

At two-loop such regularization violates exponentiation, and may result to non-cancelation of

divergences.

4

] 30.05.15
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Regularizations

p k 1 B
g § § T (pT 40T + kT +i8)(pt + kT + T +0)

Within original §-regularization, the exponentiation is broken

DiagZ Lot dik ddl 1
2 k2 12 (kt 4 1H)kHIT(k— + 1)k~

Diag, + Diagp =

6% divergent

o That can result to artificial singularities in &

¢ To incomplete cancelation of Ind, that will cause problems at higher loops.

] 30.05.15
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p k 1
g § § T (pt +i8)(pt 4 kT 4 2i0)(pt + k+ + I+ + 3i6)

é-regularization preserving exponentiation

The regularization should be implemented on the level of operator
oo oo +
Pexp [—ig/ do A4 (O'n)} — Pexp [—ig/ do Ay (on)e 07 1l
0 0
Then exponentiation is exact

DiagZ
2

Diag4 + Diagp =

] 30.05.15 16 / 28



p k 1
g § § T (pt +i8)(pt 4 kT 4 2i0)(pt + k+ + I+ + 3i6)

é-regularization preserving exponentiation

The regularization should be implemented on the level of operator
oo oo +
Pexp [—ig/ do A4 (O'n)} — Pexp [—ig/ do Ay (on)e= 07 1ol
0 0
Then exponentiation is exact

DiagZ
2

Diag4 + Diagp =

In any form, d-regularization violate gauge-invariance linearly, beware of linearly divergent
integrals.
9 Is there any regularization with scale for light-like half-infinite Wilson lines without any
problem?

<

] 30.05.15 16 / 28



How does it work at one-loop

Soft factor

CA\‘ /// \ /@ / \\
- # A - 7 AN
PLAERN Y . §=—26t5"
4 kél N /// :Aq \\ b%
€ e yoLl b Notation: B = -+
. ol S I‘AAI K 4
x\N\ / \ﬁ / Ls=1n (BJ@ZYE)
X 7 AN 7
AY ra AY 7
AY 7 AY a
Diagy = —20p8 T?()(1—¢)
Diag; = —2Cp|[BT(=€)(Ls — (=€) =) 6 “T*(I(1 - )]

UV finite

@ Only single logarithm of § remains at all orders of e-expansion.

¢ Expression is }2 divergent, it is collinear singularity.

30.05.15

17 / 28




One-loop

How does it work at one-loop

Collinear matrix element

. ":@)/ . 5+
S P ;S As =In | —
p+
b pHe Notation: 5
: b7,
SR AN Ly,=1In <I »
P ' ptop : P
Crr—1 [2(1+ 22 3+4X
Al = _F[_ 20 +27) )) +5(z)2 28
22 L e 11—z /4 €
_ 1+ 22 _
+2(2-Liy +6(2)(1 + 3Ly + 4LypAs) +
—z
+

@ Only single logarithm (As) at all orders of e-expansion.
9 As comes from singularity at z — 0
1 .
Az) = — (z lim A(z))
z §—0

1
+6(1 —2) lim/ drzA(z)
+ 6—0 Jo

y

] 30.05.15
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How does it work at one-loop

Renormalization
N TN Tk
Al s N (B, N {C ., N
L, e S e S
S5 N . N . R "
2. 3
rtk > s . As=1In| —
< ook o Notation: s T
S p
koot ' ~
. VAV VAAVAVAVRY ! !
P P . ptop . P
Diagy, = 0,

""no-scale-in-dimensional-regularization"
IR-singularity exactly cancel UV-singularity

. 4 _
Diag s 4~ v = C’FE(I-I—A(;)J(Z),

SFA+A*

e
=asCp _—4—41H(M>
Uv

02
€2 €
P +\2 S
Combining it together at 676~ = (27) ¢ we find renormalization constant
] _
Zy =-C

; 632+4+21n(§)
]

€

V.
30.05.15
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One-loop

How does it work at one-loop

6 cancels

(1 2 2

S Cri—2 ((1+2?) _ 1+z2
pll— Al 2 1 0 _ Yrrz= <7> 2( —-L )
9 s tZ4p zz[f 1 —2 ++ z bl—z +

2
+8(2) (—Lg +2L,Le + 3Ly, +1 — %) ] .

o In our set of regularization d is scaleless, i.e. all diagrams are equal to zero.
o Thus, d is pure UV-renormalization constant (DGLAP kernel)

2
dll = _2@ (Hiz)
€ 1-2 /4

ql1l
22—

o The singularities at ¢ — 0 cancel is All] —

One-loop result

ol — Cras

2
g [— 2Ly, Poq(z) + 22 + 6(2) (—L§ +2LyL¢ + 3Ly, — %) ]

o Coincide with [Collins,textbook|
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Two-loop: general structure

Counting powers of In §

& Logarithm of soft-factor must be proportional to single In(67§~), otherwise definition of
individual TMDs impossible.

_ 1 9
S=exp[Aln(6té™)+B] =1+ sl 4 é[/]
Crplné  C%1n264+CpCané+CpNpIné

o Alll w Cp [(...)+ +6(2)(Ind + ..)}

Halt 2IAl0 1] gl A0

v
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Two-loop

Two-loop: general structure

Counting powers of In §

o Logarithm of soft-factor must be proportional to single In(676~), otherwise definition of

individual TMDs impossible.

_ 1 9
S = exp [Aln(5+5 )+B] =14+ sl 4 sl2l
Crplné  C%1n264+CpCalné+CpNpIns

o Al ~ Cp [()4 +6(2)(In5 +.)]

CrCa and Cr Ny part

0 1 styAl)
D[2]S/2 +3S/SéA +

o Structure of A2l ~ Cy and ~ Ny part should be

(free of Ind), + (1 — z) (linear in Ind)

o Rather straightforward cancelation, can be traced diagram-by-diagram.
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Two-loop: general structure

Counting powers of In §

o Logarithm of soft-factor must be proportional to single In(676~), otherwise definition of
individual TMDs impossible.

_ 1 9
S = exp [Aln(5+5 )+B] =14+ sl 4 sl2l
Crplné  C%1n264+CpCaIné+CpNEpIné

o Al ~ Cp [()4 +6(2)(In5 +.)]

C]Q; part
Ind x (..)4 +6(2)(In%6 + .. |
A l1] (2] A l0] 1] gl AlO]
D[Q]:A[Q]_S 2A S 2A +3S 5;; A

5(2)(In%6 + ..)

o Structure of Al?) ~ C2 part should be

(Ind + ..)+ +6(1 —2) (1n25+1n5+ )

¢ Complected cancelation between higher € terms of products of one-loop expressions.

4
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Soft factor evaluation

s N

k, L ¥
ST Y
oo g
\ 7
A ’
o
-

¢ Only web-diagrams (since exponentiation is preserved)

¢ Complex-conjugated and mirror-conjugated diagrams to be added.
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Soft factor

Ak
7 )Né,

k= 46—

Problems of §-regularizations
nkt

Violation and restoration of gauge invariance
k
Akt — it
7 L
k
ToX kl =0

23 / 28

30.05.15

~ §(br) part is an artifact of regularization.

9 d-regularization can regularize soft divergences, e.g. diag F. Check and remove by hands.
v

°
Attention point!
]




Cancelation of 6¢

o The general form for the diagram is § = —2676~, B = b2./4

Diag = §*“a(e) + 6°B°b(c) + B*[fa(e) In*(8) +/1(€) In(8) + fo(e)]

To cancel

@ The direct calculation confirms the cancelation

Final result takes the form

S =exp [asB¢ (wi(e) In (6+5_) +r1(e)) + a’B?* (w2(€) In (6+5_) +r2(e)) + af...]
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A2 evaluation

All virtual-virtual diagrams equal to zero.
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Collinear matrix element

Evaluation: technical details

dl dk
(27.‘.)2(1

typical expression = / 4 (Ep+ — k+) kT | [k*, 1,8, ]
z

9 Introduce oo
1= / dw pTo(wpt — 1)
— o0

@ All eikonal propagator, turns to ﬁ, E_IW= etc.

<

Loop integrals are simple: (3 integrals for VR, 6+3 integrals for RR)

<

Collect diagrams to cancel mass-divergences.

©

Integrate over w, and z (if necessary) (mathematica-+hands) (most difficult part: phases)

Az) = % (z lim A(z))+ 51— 2) gii%/ol dezA(z)
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Cancelation of divergences at C'p

Cancelation of divergences in Cl%—part is shown

o Individually diagrams diverge as In* §

o In* 5 and In® & cancel in sum of diagrams for Al
@ In? 6 and Iné cancel in the combination

Al
A[é]ljf — % N free of A\s.
plus

Al 1] g1l Al0]
A[C%]ijs — 5 5 + S 88 free of A\,

& The higher orders of e-expansion (~ ¢, ¢e2) of 1-loop cancel

¢ Renormalization after soft function multiplication Z(AS)

Cancelation of divergences at Ny

o All divergences cancel (a la 1-loop)

Cancelation of divergences at C'4
° AJCC is free of In ¢ (as it should be)
A

° A‘SC is under evaluation.
A

o "Surprises" are not expected.

v
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Collinear matrix element

Conclusion

o The first calculation of by — 0 matching coefficient is (nearly) done.
o The results to be used for NNLO analysis of SIDIS.

4P, 8L, ((22 + 1) Inz — Zz)

Part y, > 1 (28 4 30Ly, + 9L7) — 302
2(1+22)1n22+41nz(22—9z—2)+47z—5
3(1—2) 9(1— ) 9
+6(2) 4 2L P+ LiL L 0(3L + 2L L¢)
Al_Z(_2 _
3\ 3 ¢T3 T g bre
112 2 832 7r2
1L L
o7 <y b+< 81 )}
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