Current status of nPDFs and future facilities

Carlota Andrés

Universidade de Santiago de Compostela

QCD evolution 2017, Jefferson Lab

Unión Europea

Fondo Europeo de Desarrollo Regional "Una manera de hacer Europa"

Outline

Introduction

- Pre-LHC global analysis
- Post-LHC run I
- Where are we going?
- Conclusions

2/24

Outline

Introduction

- Pre-LHC global analysis
- Post-LHC run I
- Where are we going?
- Conclusions

2/24

Outline

Introduction

- Pre-LHC global analysis
- Post-LHC run I
- Where are we going?
- Conclusions

2/24

Outline

- Introduction
- Pre-LHC global analysis
- Post-LHC run I
- Where are we going?
- Conclusions

Outline

- Introduction
- Pre-LHC global analysis
- Post-LHC run I
- Where are we going?
- Conclusions

3 / 24

Collinear factorization

Factorization

DGLAP equations

$$Q^2 \frac{\partial f_i(x,Q^2)}{\partial Q^2} = \sum_j \underbrace{P_{ij}(Q^2)}_{j} \otimes f_j(x,Q^2)$$
Splitting functions (calculable by perturbative methods)

4 / 24

Global Analysis

Choose data

- Parametrize the PDFs at the initial scale
- DGLAP evolution
- Compute the cross sections
- Evaluate χ^2
- Minimize $\chi^2 \Rightarrow$ Best fit \Rightarrow Hessian analysis for uncertainties.

4 / 24

Global Analysis

Choose data

Parametrize the PDFs at the initial scale

DGLAP evolution

- Compute the cross sections
- Evaluate χ^2
- Minimize $\chi^2 \Rightarrow$ Best fit \Rightarrow Hessian analysis for uncertainties.

4 / 24

- Choose data
- Parametrize the PDFs at the initial scale
- DGLAP evolution
- Compute the cross sections
- Evaluate χ^2
- Minimize $\chi^2 \Rightarrow$ Best fit \Rightarrow Hessian analysis for uncertainties.

4 / 24

- Choose data
- Parametrize the PDFs at the initial scale
- DGLAP evolution
- Compute the cross sections
- Evaluate χ^2
- Minimize $\chi^2 \Rightarrow$ Best fit \Rightarrow Hessian analysis for uncertainties.

・ロト・(型ト・(ヨト・(型ト・(ロト)))

4 / 24

- Choose data
- Parametrize the PDFs at the initial scale
- DGLAP evolution
- Compute the cross sections
- Evaluate χ^2
- Minimize $\chi^2 \Rightarrow$ Best fit \Rightarrow Hessian analysis for uncertainties.

4 / 24

- Choose data
- Parametrize the PDFs at the initial scale
- DGLAP evolution
- Compute the cross sections
- Evaluate χ^2
- Minimize $\chi^2 \Rightarrow$ Best fit \Rightarrow Hessian analysis for uncertainties.

 Introduction
 Pre-LHC
 Post-LHC run I
 Where are we going?

 What is parametrized?

Free proton baseline

$$f_i^{p/A}(x, Q_0) = f_i^p(x, Q_0) R_i(x, A)$$

Data are of the form

$$F_2^A(x,Q^2)/F_2^p(x,Q^2)$$

nPDFs always relative to proton-free PDFs.

Introduction Pre-LHC Post-LHC run I Where are we going?

Flavor decomposition

Free proton baseline

$$f_i^{p/A}(x, Q_0) = f_i^p(x, Q_0) R_i(x, A)$$

■ Usually flavor independence (FI) is assumed at Q₀:

$$R_{u_{\rm V}}(x,Q_0^2) = R_{d_{\rm V}}(x,Q_0^2)$$
$$R_{\overline{u}}(x,Q_0^2) = R_{\overline{d}}(x,Q_0^2) = R_{\overline{s}}(x,Q_0^2)$$

6 / 24

DGLAP destroyes flavor independence

Flavor separation should be considered

nCTEQ15: No FI for valence quarks. EPPS16: No FI for sea and valence quarks.

Before LHC run I

	EPS09	DSSZ12	ка15	NCTEQ15	
Order in α_s	LO & NLO	NLO	NNLO	NLO	
Neutral current DIS <i>l</i> +A/ <i>l</i> +d	\checkmark	\checkmark	✓	\checkmark	
Drell-Yan dilepton p+A/p+d	\checkmark	\checkmark	✓	\checkmark	
RHIC pions d+Au/p+p	\checkmark	\checkmark		\checkmark	
Neutrino-nucleus DIS		\checkmark			
Q cut in DIS	$1.3{ m GeV}$	$1{ m GeV}$	$1{ m GeV}$	$2{ m GeV}$	
datapoints	929	1579	1479	708	
free parameters	15	25	16	17	
error analysis	Hessian	Hessian	Hessian	Hessian	
error tolerance $\Delta \chi^2$	50	30	N.N	35	
Free proton baseline PDFs	CTEQ6.1	мѕтw2008	JR09	стеq6м-like	
Heavy-quark effects		\checkmark		\checkmark	
Flavour separation	none	none	none	some	
Reference	[JHEP 0904 065]	[PR D85 074028]	[PRD 93, 014026]	[PR D93 085037]	
7/2					
				- /	

20

Paukkunen, Nucl. Phys. A 926 (2014) 24

Valence

문어 귀분이

8 / 24

Paukkunen, Nucl. Phys. A 926 (2014) 24

Sea

Agreement in the data-constrained region

8/24

Paukkunen, Nucl. Phys. **A** 926 (2014) 24

Gluon

- No constraints from DIS and Drell-Yan
- nCTEQ15, EPS09 and DSSZ: some constraints from inclusive pion production

Where were we?

Extrapolations not completely reliable:

Depend on the initial parametrization (model-dependent)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Low x: extrapolations
- High *x*: no constraints
- Gluon: no sensitivity at low and high x
- **No** flavor decomposition

Where were we?

- Extrapolations not completely reliable:
 - Depend on the initial parametrization (model-dependent)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Low x: extrapolations
- High *x*: no constraints
- Gluon: no sensitivity at low and high x
- **No** flavor decomposition

- Extrapolations not completely reliable:
 - Depend on the initial parametrization (model-dependent)

- Low x: extrapolations
- High *x*: no constraints
- Gluon: no sensitivity at low and high x
- **No** flavor decomposition

- Extrapolations not completely reliable:
 - Depend on the initial parametrization (model-dependent)

- Low x: extrapolations
- High x: no constraints
- Gluon: no sensitivity at low and high x
- **No** flavor decomposition

- Extrapolations not completely reliable:
 - Depend on the initial parametrization (model-dependent)

- Low x: extrapolations
- High x: no constraints
- Gluon: no sensitivity at low and high x
- **No** flavor decomposition

- Extrapolations not completely reliable:
 - Depend on the initial parametrization (model-dependent)

- Low x: extrapolations
- High x: no constraints
- Gluon: no sensitivity at low and high x
- **No** flavor decomposition

Where are we?

LHC run I

10 / 24

- Charged hadrons (ALICE, CMS) and pions (ALICE)
- Jets (ATLAS)
- **Di-jets** (CMS) ⇒ **Gluon** constraints at **high** *x*!
- $W^{\pm}(ALICE, CMS)$ and $Z^{0}(ATLAS, CMS)$ bosons \Rightarrow Flavor separation?
- Only last two included in EPPS16

10 / 24

- Charged hadrons (ALICE, CMS) and pions (ALICE)
- Jets (ATLAS)
- **Di-jets** (CMS) ⇒ **Gluon** constraints at **high** *x*!
- $W^{\pm}(ALICE, CMS)$ and Z^{0} (ATLAS, CMS) bosons \Rightarrow Flavor separation?
- Only last two included in EPPS16

10 / 24

- Charged hadrons (ALICE, CMS) and pions (ALICE)
- Jets (ATLAS)
- **Di-jets** (CMS) ⇒ **Gluon** constraints at **high** *x*!
- $\mathbf{W}^{\pm}(\text{ALICE, CMS})$ and \mathbf{Z}^{0} (ATLAS, CMS) bosons \Rightarrow Flavor separation?
- Only last two included in EPPS16

10 / 24

- Charged hadrons (ALICE, CMS) and pions (ALICE)
- Jets (ATLAS)
- **Di-jets** (CMS) ⇒ **Gluon** constraints at high *x*!
- $\mathbf{W}^{\pm}(\text{ALICE, CMS})$ and \mathbf{Z}^{0} (ATLAS, CMS) bosons \Rightarrow Flavor separation?
- Only last two included in EPPS16

10 / 24

- Charged hadrons (ALICE, CMS) and pions (ALICE)
- Jets (ATLAS)
- **Di-jets** (CMS) ⇒ **Gluon** constraints at high x!
- $\mathbf{W}^{\pm}(\text{ALICE, CMS})$ and \mathbf{Z}^{0} (ATLAS, CMS) bosons \Rightarrow Flavor separation?
- Only last two included in EPPS16

11 / 24

Kinematic region

The LHC opens an unexplored kinematic region!

Global analysis

Thanks to Paukkunen QM2017

	EPPS16	DSSZ12	ка15	NCTEQ15
Order in α_s	NLO	NLO	NNLO	NLO
Neutral current DIS <i>ℓ</i> +A/ <i>ℓ</i> +d	\checkmark	 ✓ 	\checkmark	\checkmark
Drell-Yan dilepton p+A/p+d	\checkmark	 ✓ 	\checkmark	\checkmark
RHIC pions d+Au/p+p	\checkmark	 ✓ 		\checkmark
Neutrino-nucleus DIS	\checkmark	\checkmark		
Drell-Yan dilepton $\pi + A^1$	\checkmark			
LHC p+Pb jet data	\checkmark			
LHC p+Pb W, Z data	\checkmark			
Q cut in DIS	$1.3{ m GeV}$	$1 \mathrm{GeV}$	$1{ m GeV}$	$2 \mathrm{GeV}$
datapoints	1811	1579	1479	708
free parameters	20	25	16	17
error analysis	Hessian	Hessian	Hessian	Hessian
error tolerance $\Delta \chi^2$	52	30	N.N	35
Free proton baseline PDFs	CT14NLO	MSTW2008	JR09	стеq6м-like
Heavy-quark effects	\checkmark	 ✓ 		 ✓
Flavour separation	full	none	none	some
Reference	[ARXIV:1612.05741	[PR D85 074028]	[PRD 93, 014026]	[PR D93 085037]
				12/24

Z^0 production in p-Pb

EPPS16, arXiv:1612.05741

 $x \approx \frac{M_z}{\sqrt{s}} e^{-y_z}$

Data deviates from unity for non-symmetric acceptance

• Shadowing for $y_z > 0 \Rightarrow$ Suppression

13/24

315

・ロン ・日 ・ ・ ヨン ・ ヨン

ヘロト ヘヨト ヘヨト ヘヨト

크네

14 / 24

W^{\pm} production in p-Pb

EPPS16, arXiv:1612.05741

- Isospin effects ⇒ Baseline suppression
- Shadowing for $y_{l_{\pm}} > 0 \Rightarrow$ Suppression

15 / 24

Di-jets production in p-Pb

EPPS16, arXiv:1612.05741

Di-jets to constrain large-x gluons!

- Antishadowing for $\eta_{\rm dijet} > 0$ and EMC for $\eta_{\rm dijet} < 0 \Rightarrow$ Enhancement
- Data deviates from unity for non-symmetric acceptance

15/24

<ロ> (日) (日) (日) (日) (日)

Di-jets production in p-Pb

EPPS16, arXiv:1612.05741

Di-jets to constrain large-x gluons!

- nCTEQ15: large di-jet uncertainty band
- DSSZ: similar to no nuclear effects

・ロン ・四 と ・ ヨン ・ ヨン

≣ ⊃ < <> 16 / 24

$R_{valence}$

EPPS16, arXiv:1612.05741

nCTEQ15: partly flavor dependence

EPPS16, arXiv:1612.05741

18 / 24

EPPS16, arXiv:1612.05741

- EPPS16 more parameters ⇒ larger uncertainties. Except: large-x (di-jet data)
- DSSZ almost no suppression

LHC run I: novel constraints!

- Larger uncertainties, but lower bias
- **Flavor separation** possible with ν -DIS data \Rightarrow $R_{u_v} \sim R_{d_v}$
- Di-jets: gluons more constrained at large x
- Correlated systematics missing!
- Accurate FFs needed
- Symmetric acceptances in the c.m frame!

19/24

Summary

LHC run I: novel constraints!

- Larger uncertainties, but lower bias
- **Flavor separation** possible with ν -DIS data $\Rightarrow R_{u_v} \sim R_{d_v}$
- Di-jets: **gluons** more constrained at **large** x
- Correlated systematics missing!
- Accurate FFs needed
- Symmetric acceptances in the c.m frame!

19/24

Summary

- LHC run I: novel constraints!
- Larger uncertainties, but lower bias
- Flavor separation possible with ν -DIS data $\Rightarrow R_{u_v} \sim R_{d_v}$
- Di-jets: **gluons** more constrained at **large** *x*
- Correlated systematics missing!
- Accurate FFs needed
- Symmetric acceptances in the c.m frame!

- LHC run I: novel constraints!
- Larger uncertainties, but lower bias
- Flavor separation possible with ν -DIS data \Rightarrow $R_{u_{\nu}} \sim R_{d_{\nu}}$
- Di-jets: gluons more constrained at large x
- Correlated systematics missing!
- Accurate FFs needed
- Symmetric acceptances in the c.m frame!

- LHC run I: novel constraints!
- Larger uncertainties, but lower bias
- Flavor separation possible with ν -DIS data \Rightarrow $R_{u_{\nu}} \sim R_{d_{\nu}}$
- Di-jets: gluons more constrained at large x
- Correlated systematics missing!
- Accurate FFs needed
- Symmetric acceptances in the c.m frame!

- LHC run I: novel constraints!
- Larger uncertainties, but lower bias
- Flavor separation possible with ν -DIS data $\Rightarrow R_{u_v} \sim R_{d_v}$
- Di-jets: gluons more constrained at large x
- Correlated systematics missing!
- Accurate FFs needed
- Symmetric acceptances in the c.m frame!

- LHC run I: novel constraints!
- Larger uncertainties, but lower bias
- Flavor separation possible with ν -DIS data $\Rightarrow R_{u_v} \sim R_{d_v}$

- Di-jets: gluons more constrained at large x
- Correlated systematics missing!
- Accurate FFs needed
- Symmetric acceptances in the c.m frame!

19/24

Where are we going?

20 / 24

- LHC run I: p-p reference at $\sqrt{s} = 5$ GeV measured $\Rightarrow R_{\rm pPb}$ \Rightarrow Other observables possible
- \blacksquare LHC run II: already a p-p reference at \sqrt{s} = 8 GeV \Rightarrow Drell-Yan at LHCb
- Correlated systematics needed
- It would be better: same phase space for p-p and p-Pb

20 / 24

- LHC run I: p-p reference at $\sqrt{s} = 5$ GeV measured $\Rightarrow R_{\rm pPb}$ \Rightarrow Other observables possible
- \blacksquare LHC run II: already a p-p reference at \sqrt{s} = 8 GeV \Rightarrow Drell-Yan at LHCb
- Correlated systematics needed
- It would be better: same phase space for p-p and p-Pb

20 / 24

- LHC run I: p-p reference at $\sqrt{s} = 5$ GeV measured $\Rightarrow R_{\rm pPb}$ \Rightarrow Other observables possible
- \blacksquare LHC run II: already a p-p reference at \sqrt{s} = 8 GeV \Rightarrow Drell-Yan at LHCb
- Correlated systematics needed
- It would be better: same phase space for p-p and p-Pb

20 / 24

- LHC run I: p-p reference at $\sqrt{s} = 5$ GeV measured $\Rightarrow R_{\rm pPb}$ \Rightarrow Other observables possible
- \blacksquare LHC run II: already a p-p reference at \sqrt{s} = 8 GeV \Rightarrow Drell-Yan at LHCb
- Correlated systematics needed
- It would be better: same phase space for p-p and p-Pb

21 / 24

A-Z NNLO nPDFS

First NNLO nPDF set within a GM-VFNS

- Charged lepton and neutrino DIS data already included
- Drell-Yan to come
- Nuclear effects in deuterium
- Flavor separation?
- When? 17xx.xxxx

21 / 24

A-Z NNLO nPDFS

- First NNLO nPDF set within a GM-VFNS
- Charged lepton and neutrino DIS data already included
- Drell-Yan to come
- Nuclear effects in deuterium
- Flavor separation?
- When? 17xx.xxxx

21 / 24

A-Z NNLO nPDFS

- First NNLO nPDF set within a GM-VFNS
- Charged lepton and neutrino DIS data already included
- Drell-Yan to come
- Nuclear effects in deuterium
- Flavor separation?
- When? 17xx.xxxx

21 / 24

A-Z NNLO nPDFS

- First NNLO nPDF set within a GM-VFNS
- Charged lepton and neutrino DIS data already included
- Drell-Yan to come
- Nuclear effects in deuterium
- Flavor separation?
- When? 17xx.xxxx

21/24

A-Z NNLO nPDFS

- First NNLO nPDF set within a GM-VFNS
- Charged lepton and neutrino DIS data already included
- Drell-Yan to come
- Nuclear effects in deuterium
- Flavor separation?
- When? 17xx.xxxx

・ロト (四) (三) (三) (三) (三) (三) (三)

21 / 24

A-Z NNLO nPDFS

- First NNLO nPDF set within a GM-VFNS
- Charged lepton and neutrino DIS data already included
- Drell-Yan to come
- Nuclear effects in deuterium
- Flavor separation?
- When? 17xx.xxxx

22 / 24

EIC: kinematics

Crucial to study the low-x region!!

Accardi et al., Eur. Phys. J. A52 (2016) no.9, 268

EIC

Accardi et al., Eur. Phys. J. A52 (2016) no.9, 268

23 / 24

문 님

イロン イ団と イヨン イヨン

Introduction

Pre-LHC

Post-LHC run I

Where are we going?

Accardi et al., Eur. Phys. J. A52 (2016) no.9, 268

∃ = ೨९
24 / 24

≣⇒

Backup

nPDFs vs. PDFs kinematics

•
$$\chi^2$$
 expanded around the minimum

$$\chi^{2} = \chi^{2}_{0} + \sum_{i,j} \left(a_{i} - a_{i}^{0} \right) H_{ij} \left(a_{j} - a_{j}^{0} \right) = \chi^{2}_{0} + \sum_{i} z_{i}^{2}$$
$$(\delta X)^{2} = \left(\frac{\partial X}{\partial z_{i}} \times \delta z_{i} \right)^{2}, \ \delta z_{i} = \frac{\delta z_{i}^{+} + \delta z_{i}^{-}}{2}$$

- PDF uncetainty sets S_i^{\pm} :
 - $S_{1}^{\pm} = \delta z_{1}^{\pm}(1, 0, ..., 0)$ $S_{N}^{\pm} = \delta z_{N}^{\pm}(0, 0, ..., N)$ $(\delta X)^{2} = \frac{1}{4} \sum_{i} \left[X(S_{i}^{+}) - X(S_{i}^{-}) \right]^{2}$

<ロ > < @ > < E > < E > E = のQの 24 / 24 • δz_i^{\pm} are defined to correspond to a fixed $\Delta \chi^2$

• Ideally
$$\Delta \chi^2 = 1$$

In practice: $\Delta \chi^2 >> 1$ due to the parametrization bias:

EPPS16:
$$\Delta \chi^2 = 52$$

DSSZ12: $\Delta \chi^2 = 30$
nCTEQ15: $\Delta \chi^2 = 35$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

24 / 24

EPJ C63 189

Drell-Yan

 Intermediate-mass Drell-Yan process at forward direction would provide a nice probe of small-x sea quarks [ARLEO ET.AL, PHYS.REV. D95 (2017) 011502]

• Within the possibilities of e.g. LHCb with the Run-II luminosity [LHCB-PUB-2016-011].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへの

24 / 24

 New low-mass Drell-Yan measurements expected from Fermilab SeaQuest experiment [FERMILAB-THESIS-2016-13].

LHeC

<ロ> <同> <目> <目> ののの 24 / 24